Objective To evaluate the clinical value of next-generation sequencing (NGS) in neonatal disease screening, particularly its advantages when combined with tandem mass spectrometry (MS/MS). Methods A prospective study was conducted involving blood samples from 1 999 neonates born at the Shenzhen Guangming District People's Hospital, between May and August 2021. All samples were initially screened using MS/MS and fluorescence immunoassay, followed by NGS to detect high-frequency variation sites in 135 related pathogenic genes. Suspected positive variants were validated using Sanger sequencing or multiplex ligation-dependent probe amplification in family studies. Results No confirmed positive cases were found in the MS/MS analysis of the 1 999 neonates. Genetic screening identified 58 positive cases (2.90%), 732 carriers of pathogenic genes (36.62%), and 1 209 negative cases (60.48%). One case of neonatal intrahepatic cholestasis was diagnosed (0.05%, 1/1 999). Fluorescence immunoassay identified 39 cases of glucose-6-phosphate dehydrogenase (G6PD) deficiency (1.95%, 39/1 999), while genetic screening identified 43 cases of G6PD deficiency (2.15%, 43/1 999). The fluorescence immunoassay also detected 6 cases of hyperthyrotropinemia (0.30%, 6/1 999), all of whom carried DUOX2 gene variants. The top ten pathogenic gene carrier rates were G6PD (12.8%), DUOX2 (8.7%), HBB (8.2%), ATP7B (6.6%), GJB2 (5.7%), SLC26A4 (5.6%), PAH (5.6%), ACADSB (4.6%), SLC25A13 (4.2%), and SLC22A5 (4.1%). Conclusions NGS can serve as an effective complement to MS/MS, significantly improving the detection rate of inherited metabolic disorders in neonates. When combined with family validation, it enables precise diagnosis, particularly demonstrating complementary advantages in screening for monogenic diseases such as G6PD deficiency.
Key words
Genetic screening /
Tandem mass spectrometry /
Neonatal screening /
Inherited metabolic disorder /
Neonate
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
1 卫生部. 关于印发《新生儿疾病筛查技术规范(2010年版)》的通知: 卫妇社发〔2010〕96号[EB/OL]. (2010-12-01)[2024-02-06]. http://www.nhc.gov.cn/wjw/gfxwj/201304/e6215cd2b1c541c6914aefeb542e3467.shtml.
2 赵正言. 国际新生儿疾病筛查进展[J]. 中国儿童保健杂志, 2012, 20(3): 193-195.
3 Gu X, Wang Z, Ye J, et al. Newborn screening in China: phenylketonuria, congenital hypothyroidism and expanded screening[J]. Ann Acad Med Singap, 2008, 37(12 Suppl): 104-107. PMID: 19904469.
4 Kemper AR, Green NS, Calonge N, et al. Decision-making process for conditions nominated to the recommended uniform screening panel: statement of the US Department of Health and Human Services Secretary's Advisory Committee on Heritable Disorders in Newborns and Children[J]. Genet Med, 2014, 16(2): 183-187. PMID: 23907646. DOI: 10.1038/gim.2013.98.
5 HRSA. Recommended uniform screening panel[EB/OL]. (2018-02)[2024-02-26]. https://www.hrsa.gov/advisory-committees/heritable-disorders/rusp.
6 Rajabi F. Updates in newborn screening[J]. Pediatr Ann, 2018, 47(5): e187-e190. PMID: 29750285. DOI: 10.3928/19382359-20180426-01.
7 Fabie NAV, Pappas KB, Feldman GL. The current state of newborn screening in the United States[J]. Pediatr Clin North Am, 2019, 66(2): 369-386. PMID: 30819343. DOI: 10.1016/j.pcl.2018.12.007.
8 中华预防医学会出生缺陷与控制专业委员会新生儿遗传代谢病筛查学组, 中华医学会儿科学分会新生儿学组. 中国新生儿基因筛查专家共识: 高通量测序在单基因病筛查中的应用[J]. 中华实用儿科临床杂志, 2023, 38(1): 31-36. DOI:10.3760/cma.j.cn101070-20221103-01252.
9 Riggs ER, Andersen EF, Cherry AM, et al. Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen)[J]. Genet Med, 2020, 22(2): 245-257. PMID: 31690835. PMCID: PMC7313390. DOI: 10.1038/s41436-019-0686-8.
10 《临床分子病理实验室二代基因测序检测专家共识》编写组. 临床分子病理实验室二代基因测序检测专家共识[J]. 中华病理学杂志, 2017, 46(3): 145-148. PMID: 28297752. DOI: 10.3760/cma.j.issn.0529-5807.2017.03.001.
11 张伟然, 赵正言. 新生儿疾病基因筛查研究进展[J]. 中华儿科杂志, 2020, 58(12): 1033-1037. PMID: 33256331. DOI: 10.3760/cma.j.cn112140-20200614-00620.
12 Holm IA, Agrawal PB, Ceyhan-Birsoy O, et al. The BabySeq project: implementing genomic sequencing in newborns[J]. BMC Pediatr, 2018, 18(1): 225. PMID: 29986673. PMCID: PMC6038274. DOI: 10.1186/s12887-018-1200-1.
13 Milko LV, Funke BH, Hershberger RE, et al. Development of Clinical Domain Working Groups for the Clinical Genome Resource (ClinGen): lessons learned and plans for the future[J]. Genet Med, 2019, 21(4): 987-993. PMID: 30181607. PMCID: PMC6401338. DOI: 10.1038/s41436-018-0267-2.
14 Tong F, Wang J, Xiao R, et al. Application of next generation sequencing in the screening of monogenic diseases in China, 2021: a consensus among Chinese newborn screening experts[J]. World J Pediatr, 2022, 18(4): 235-242. PMID: 35292922. DOI: 10.1007/s12519-022-00522-8.
15 Hume S, Nelson TN, Speevak M, et al. CCMG practice guideline: laboratory guidelines for next-generation sequencing[J]. J Med Genet, 2019, 56(12): 792-800. PMID: 31300550. PMCID: PMC6929709. DOI: 10.1136/jmedgenet-2019-106152.
16 Rehder C, Bean LJH, Bick D, et al. Next-generation sequencing for constitutional variants in the clinical laboratory, 2021 revision: a technical standard of the American College of Medical Genetics and Genomics (ACMG)[J]. Genet Med, 2021, 23(8): 1399-1415. PMID: 33927380. DOI: 10.1038/s41436-021-01139-4.
17 Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology[J]. Genet Med, 2015, 17(5): 405-424. PMID: 25741868. PMCID: PMC4544753. DOI: 10.1038/gim.2015.30.
18 McCabe LL, Therrell BL, McCabe ER. Newborn screening: rationale for a comprehensive, fully integrated public health system[J]. Mol Genet Metab, 2002, 77(4): 267-273. PMID: 12468271. DOI: 10.1016/s1096-7192(02)00196-8.
19 顾学范. 临床遗传代谢病[M]. 北京: 人民卫生出版社, 2015: 6.
20 Matern WM, Harris HT, Danchik C, et al. Functional whole genome screen of nutrient-starved Mycobacterium tuberculosis identifies genes involved in rifampin tolerance[J]. Microorganisms, 2023, 11(9): 2269. PMID: 37764112. PMCID: PMC10534295. DOI: 10.3390/microorganisms11092269.
21 Delado?y J, Ruel J, Giguère Y, et al. Is the incidence of congenital hypothyroidism really increasing? A 20-year retrospective population-based study in Québec[J]. J Clin Endocrinol Metab, 2011, 96(8): 2422-2429. PMID: 21632812. DOI: 10.1210/jc.2011-1073.
22 中华医学会儿科学分会内分泌遗传代谢学组, 中华预防医学会儿童保健分会新生儿疾病筛查学组. 先天性甲状腺功能减低症诊疗共识[J]. 中华儿科杂志, 2011, 49(6): 421-424. PMID: 21924053. DOI: 10.3760/cma.j.issn.0578-1310.2011.06.006.
23 Matern D, Tortorelli S, Oglesbee D, et al. Reduction of the false-positive rate in newborn screening by implementation of MS/MS-based second-tier tests: the Mayo Clinic experience (2004-2007)[J]. J Inherit Metab Dis, 2007, 30(4): 585-592. PMID: 17643193. DOI: 10.1007/s10545-007-0691-y.
24 Vernon HJ. Inborn errors of metabolism: advances in diagnosis and therapy[J]. JAMA Pediatr, 2015, 169(8): 778-782. PMID: 26075348. DOI: 10.1001/jamapediatrics.2015.0754.
25 Adhikari AN, Gallagher RC, Wang Y, et al. The role of exome sequencing in newborn screening for inborn errors of metabolism[J]. Nat Med, 2020, 26(9): 1392-1397. PMID: 32778825. PMCID: PMC8800147. DOI: 10.1038/s41591-020-0966-5.