
双重血浆分子吸附系统在儿童急性肝衰竭中的应用
贺杰, 张新萍, 周雄, 蔡姿丽, 康霞艳, 段蔚, 赵文姣, 肖政辉
中国当代儿科杂志 ›› 2021, Vol. 23 ›› Issue (2) : 180-185.
双重血浆分子吸附系统在儿童急性肝衰竭中的应用
Application of double plasma molecular adsorption system in children with acute liver failure
目的 探讨双重血浆分子吸附系统(DPMAS)用于儿童急性肝衰竭(PALF)的有效性及安全性。方法 前瞻性收集2018年3月至2020年6月在湖南省儿童医院重症医学科住院的PALF患儿的临床资料,随机分为血浆置换组(PE组)和DPMAS组,每组各18例。比较两组患儿临床指标、治疗前后实验室指标和不良反应。结果 DPMAS组人工肝次数、ICU住院时间均小于PE组(P < 0.05),两组12周生存率比较差异无统计学意义(P > 0.05)。两组治疗前实验室指标比较差异无统计学意义(P > 0.05)。两组治疗后总胆红素、白细胞介素-6、肿瘤坏死因子-α较治疗前均下降,DPMAS组下降更显著(P < 0.05);两组治疗后丙氨酸氨基转移酶较治疗前均下降(P < 0.05),但组间差异无统计学意义(P > 0.05);PE组治疗后白蛋白较治疗前上升,而DPMAS组较治疗前降低(P < 0.05);PE组治疗后凝血酶原时间较治疗前缩短,而DPMAS组较治疗前延长(P < 0.05)。两组治疗后总胆红素反弹率差异无统计学意义(P > 0.05)。两组间不良反应总发生率差异无统计学意义(P > 0.05)。结论 DPMAS治疗PALF有效且安全,可作为PALF人工肝治疗时的备选新模式。
Objective To study the efficacy and safety of double plasma molecular absorption system (DPMAS) in the treatment of pediatric acute liver failure (PALF). Methods A prospective analysis was performed on the medical data of children with PALF who were hospitalized in the Intensive Care Unit (ICU), Hunan Children's Hospital, from March 2018 to June 2020. The children were randomly divided into two groups:plasma exchange group (PE group) and DPMAS group (n=18 each). The two groups were compared in terms of clinical indices after treatment, laboratory markers before and after treatment, and adverse events after treatment. Results Compared with the PE group, the DPMAS group had a significantly lower number of times of artificial liver support therapy and a significantly shorter duration of ICU stay (P < 0.05), while there was no significant difference in the 12-week survival rate between the two groups (P > 0.05). There was no significant difference in laboratory markers between the two groups before treatment (P > 0.05). After treatment, both groups had reductions in the levels of total bilirubin, interleukin-6, and tumor necrosis factor-α, and the DPMAS group had significantly greater reductions than the PE group (P < 0.05). Both groups had a significant reduction in alanine aminotransferase (P < 0.05), while there was no significant difference between the two groups (P > 0.05). The PE group had a significant increase in albumin, while the DPMAS group had a significant reduction in albumin (P < 0.05). The PE group had a significant reduction in prothrombin time, while the DPMAS group had a significant increase in prothrombin time (P < 0.05). There was no significant difference between the two groups in the rebound rate of total bilirubin and the overall incidence rate of adverse events after treatment (P > 0.05). Conclusions DPMAS is safe and effective in the treatment of PALF and can thus be used as an alternative to artificial liver support therapy.
急性肝衰竭 / 双重血浆分子吸附系统 / 血浆置换 / 儿童
Acute liver failure / Double plasma molecular adsorption system / Plasma exchange / Child
[1] Newland CD. Acute liver failure[J]. Pediatr Ann, 2016, 45(12):e433-e438.
[2] Kathemann S, Bechmann LP, Sowa JP, et al. Etiology, outcome and prognostic factors of childhood acute liver failure in a German single center[J]. Ann Hepatol, 2015, 14(5):722-728.
[3] Zhao P, Wang CY, Liu WW, et al. Acute liver failure in Chinese children:a multicenter investigation[J]. Hepatobiliary Pancreat Dis Int, 2014, 13(3):276-280.
[4] Ng VL, Li RS, Loomes KM, et al. Outcomes of children with and without hepatic encephalopathy from the pediatric acute liver failure study group[J]. J Pediatr Gastroenterol Nutr, 2016, 63(3):357-364.
[5] Pham YH, Miloh T. Liver transplantation in children[J]. Clin Liver Dis, 2018, 22(4):807-821.
[6] Firl DJ, Sasaki K, McVey J, et al. Improved survival following living donor liver transplantation for pediatric acute liver failure:analysis of 20 years of US national registry data[J]. Liver Transpl, 2019, 25(8):1241-1250.
[7] Jain V, Dhawan A. Extracorporeal liver support systems in paediatric liver failure[J]. J Pediatr Gastroenterol Nutr, 2017, 64(6):855-863.
[8] 中华医学会感染病学分会肝衰竭与人工肝学组. 非生物型人工肝治疗肝衰竭指南(2016年版)[J]. 中华临床感染病杂志, 2016, 9(2):97-103.
[9] 王涛, 张国英, 王波, 等. 血液净化辅助救治儿童重型抗癫痫药高敏综合征1例报告[J]. 四川大学学报(医学版), 2018, 49(6):990.
[10] Bucuvalas J, Yazigi N, Squires RH Jr. Acute liver failure in children[J]. Clin Liver Dis, 2006, 10(1):149-168.
[11] 崔云, 张育才. 非生物型人工肝/血液净化治疗儿童急性肝衰竭技术规范-上海交通大学附属儿童医院重症医学科诊疗技术规范[J]. 中国小儿急救医学, 2016, 23(8):510-515.
[12] Roth K, Strickland J, Copple BL. Regulation of macrophage activation in the liver after acute injury:role of the fibrinolytic system[J]. World J Gastroenterol, 2020, 26(16):1879-1887.
[13] Wree A, Holtmann TM, Inzaugarat ME, et al. Novel drivers of the inflammatory response in liver injury and fibrosis[J]. Semin Liver Dis, 2019, 39(3):275-282.
[14] Triantafyllou E, Woollard KJ, Mcphail MJW, et al. The role of monocytes and macrophages in acute and acute-on-chronic liver failure[J]. Front Immunol, 2018, 9:2948.
[15] Weiskirchen R, Tacke F. Cellular and molecular functions of hepatic stellate cells in inflammatory responses and liver immunology[J]. Hepatobiliary Surg Nutr, 2014, 3(6):344-363.
[16] Chastre A, Bélanger M, Beauchesne E, et al. Inflammatory cascades driven by tumor necrosis factor-alpha play a major role in the progression of acute liver failure and its neurological complications[J]. PLoS One, 2012, 7(11):e49670.
[17] Lai HS, Lin WH, Lai SL, et al. Interleukin-6 mediates angiotensinogen gene expression during liver regeneration[J]. PLoS One, 2013, 8(7):e67868.
[18] Zhao SM, Jiang JH, Jing YY, et al. The concentration of tumor necrosis factor-α determines its protective or damaging effect on liver injury by regulating Yap activity[J]. Cell Death Dis, 2020, 11(1):70.
[19] Lai WY, Wang JW, Huang BT, et al. A novel TNF-α-targeting aptamer for TNF-α-mediated acute lung injury and acute liver failure[J]. Theranostics, 2019, 9(6):1741-1751.
[20] Gao DD, Fu J, Qin B, et al. Recombinant adenovirus containing hyper-interleukin-6 and hepatocyte growth factor ameliorates acute-on-chronic liver failure in rats[J]. World J Gastroenterol, 2016, 22(16):4136-4148.
[21] Tan EX, Wang MX, Pang JX, et al. Plasma exchange in patients with acute and acute-on-chronic liver failure:a systematic review[J]. World J Gastroenterol, 2020, 26(2):219-245.
[22] Stahl K, Hadem J, Schneider A, et al. Therapeutic plasma exchange in acute liver failure[J]. J Clin Apher, 2019, 34(5):589-597.
[23] 常莉, 周平, 冯璇璘. 双重血浆分子吸附系统对急性肝功能衰竭患者炎性细胞因子及趋化因子影响研究[J]. 创伤与急危重病医学, 2018, 6(4):211-213.
[24] 国家卫生健康委医政医管局. 关于血液净化标准操作规程(2020年版)(征求意见稿)公开征求意见的公告[EB/OL]. (2020-07-20)[2020-11-10]. http://www.nhc.gov.cn/wjw/yjzj/202007/2315a7e58f734b49a8c744d88b5319c9.shtml.
[25] 中国医师协会儿科医师分会血液净化专业委员会. 儿童血浆置换临床应用专家共识[J]. 中华实用儿科临床杂志, 2018, 33(15):1128-1135.
[26] 中国医师协会儿科医师分会血液净化专业委员会. 儿童血液灌流临床应用专家共识[J]. 中国小儿急救医学, 2018, 25(8):561-568.
[27] 许开亮, 雷鸣, 袁维方, 等. 双重血浆分子吸附系统治疗肝衰竭高胆红素患者疗效研究[J]. 创伤与急危重病医学, 2020, 8(2):91-93.
[28] 钟珊, 王娜, 赵静, 等. 血浆置换联合双重血浆吸附治疗提高慢加急性肝衰竭预后[J]. 中华肝脏病杂志, 2018, 26(10):744-749.
儿童急救医学湖南省重点实验室(2018TP1028)。