目的对中文修订版孤独症谱系评定量表(ASRS)问卷进行结构效度分析。方法选取某小学701名年龄在6~12岁之间的小学生作为调查对象,让所有小学生的父母填写ASRS问卷,将回收的有效问卷信息录入计分软件,系统自动评分,应用Mpuls 6.0软件进行结构效度分析。结果共发放ASRS问卷701份,回收671份有效问卷,回收率95.7%。671份问卷中,男368人(54.8%),女303人(45.2%)。中文修订版ASRS问卷3因子结构模型拟合指数中,近似误差均方根(RMSEA)为0.053,比较拟合指数(CFI)为0.889,Tucker-Lewis指数(TLI)为0.884,其指标均优于未修订版ASRS问卷(RMSEA:0.060,CFI:0.829,TLI:0.823)。结论修订后的ASRS问卷具有较好的结构效度,可作为ASD评估工具在我国推广使用。
Abstract
Objective To investigate the construct validity of the Autism Spectrum Rating Scale of Revised Chinese Version (RC-ASRS). Methods Seven hundred and one children aged 6-12 years old were recruited from one primary school in the Minhang District of Shanghai. The parents of the children completed the RC-ASRS questionnaire. Mpuls 6.0 Software was used to conduct the construct validity analysis. Results A total of 671 questionnaires (95.7%) were retrieved, involving 368 boys (54.8%) and 303 girls (45.2%). The 3 factor structure of the RC-ASRS had better model fitting indices, 0.051 for root mean square error of approximation (RMSEA), 0.889 for comparative fit index (CFI) and 0.884 for Tucker-Lewis index (TLI), compared with the original ASRS, 0.060 for RMSEA, 0.829 for CFI and 0.823 for TLI. Conclusions The RC-ASRS may serve as a reliable and valid tool for screening autistic symptoms in China.
关键词
孤独症谱系障碍 /
结构效度 /
问卷 /
儿童
Key words
Autism spectrum disorder /
Construct validity /
Questionnaire /
Child
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Lai MC, Lombardo MV, Baron-Cohen S. Autism[J]. Lancet, 2014, 383(9920):896-910.
[2] Falco M. Autism rates now in 1 in 68 US children:CDC[N]. CNN News, 2014.
[3] 李勇, 邵翠霞, 施继良, 等. 北京市三类残疾儿童3年随访研究[J]. 中国康复理论与实践, 2011, 17(1):53-55.
[4] Goldstein S, Naglieri JA. Autism spectrum rating scales?[DB/OL]. (2009)[2013-11] . http://www.mhs.com/product.aspx?gr=ed u&prod=asrs&id=overview
[5] Kvamme OJ, Mainz J, Helin A, et al. Interpretation of questionnaires. A translation method problem[J]. Nord Med, 1998, 113(10):363-366.
[6] Bollen KA. Latent variables in psychology and the social sciences[J]. Annu Rev Psychol, 2002, 53:605-634.
[7] Rajamani KT, Styner MA, Talib H, et al. Statistical deformable bone models for robust 3D surface extrapolation from sparse data[J]. Med Image Anal, 2007, 11(2):99-109.
[8] 蒋小花, 沈卓之, 张楠楠, 等. 问卷的信度和效度分析[J]. 现代预防医学, 2010, 37(3):429-431.
[9] Champlain AF. Best-fit model of exploratory and confirmatory factor analysis of the 2010 Medical Council of Canada Qualifying Examination Part I clinical decision-making cases[J]. J Educ Eval Health Prof, 2015, 12:11.
[10] 温忠麟, 侯杰泰. 检验的临界值:真伪差距多大才能辨别?-评《不同条件下拟合指数的表现及临界值的选择》[J]. 心理学报, 2008, 40(1):119-124.
[11] Chen PY, Yang CM, Morin CM. Validating the cross-cultural factor structure and invariance property of the Insomnia Severity Index:evidence based on ordinal EFA and CFA[J]. Sleep Med, 2015, 16(5):598-603.
基金
国家卫生和计划生育委员会卫生行业专项(201302002);上海市科委国际合作项目(14430712200)。