头孢呋辛钠影响幼鼠平行纤维-浦肯野细胞的突触可塑性

何海燕, 任颖鸽, 李凌, 晋芙莉, 杜永平, 张月萍

中国当代儿科杂志 ›› 2016, Vol. 18 ›› Issue (6) : 558-563.

PDF(1760 KB)
PDF(1760 KB)
中国当代儿科杂志 ›› 2016, Vol. 18 ›› Issue (6) : 558-563. DOI: 10.7499/j.issn.1008-8830.2016.06.017
论著·实验研究

头孢呋辛钠影响幼鼠平行纤维-浦肯野细胞的突触可塑性

  • 何海燕1,2, 任颖鸽1, 李凌1, 晋芙莉1, 杜永平1, 张月萍1
作者信息 +

Influence of cefuroxime sodium on synaptic plasticity of parallel fiber-Purkinje cells in young rats

  • HE Hai-Yan1,2, REN Ying-Ge1, LI Ling1, JIN Fu-Li1, DU Yong-Ping1, ZHANG Yue-Ping1
Author information +
文章历史 +

摘要

目的 探讨头孢呋辛钠(CS)对Sprague-Dawley(SD)大鼠小脑浦肯野细胞(PCs)电生理功能的影响。方法 将7 d龄(P7)SD大鼠分为早期用药Ⅰ组、Ⅱ组(P7~P14给药)和晚期用药组(P14~P21给药),均腹腔注射CS;以及早期用药对照组和晚期用药对照组,腹腔注射等容积的生理盐水(NS)。每组均10只。早期用药Ⅰ组及早期对照组于P15处死,早期用药Ⅱ组、晚期用药及晚期对照组于P22处死。采用全细胞膜片钳记录法,在小脑脑片上记录PCs的内向电流和动作电位,以及低频刺激平行纤维(PF)诱发的PCs兴奋性突触后电流(EPSC)的长时程抑制(LTD)现象。结果 早期用药组和晚期用药组PCs内向电流幅值和动作电位峰值均略大于相应对照组,差异无统计学意义 (P > 0.05);用药组的EPSC抑制程度均大于对照组 (P < 0.01),但早期用药Ⅱ组的抑制程度较晚期用药组更大 (P < 0.01)。结论 生后早期CS暴露影响幼鼠小脑平行纤维PC 的突触可塑性,这种影响在停药后仍持续存在。

Abstract

Objective To investigate the influence of cefuroxime sodium (CS) on the electrophysiological function of cerebellar Purkinje cells (PCs) in Sprague-Dawley rats. Methods Postnatal day 7 (P7) Sprague-Dawley rats were divided into early administration I and II groups (administered from P7 to P14) and late administration group (administered from P14 to P21), and all the groups received intraperitoneally injected CS. The control groups for early and late administration groups were also established and treated with intraperitoneally injected normal saline of the same volume. There were 10 rats in each group. The rats in the early administration I group and early administration control group were sacrificed on P15, and those in the early administration II group, late administration group, and late administration control group were sacrificed on P22. The whole-cell patch-clamp technique was used to record inward current and action potential of PCs on cerebellar slices, as well as the long-term depression (LTD) of excitatory postsynaptic current (EPSC) in PCs induced by low-frequency stimulation of parallel fiber (PF). Results Compared with the control groups, the early and late administration groups had a slightly higher magnitude of inward current and a slightly higher amplitude of action potential of PCs (P > 0.05). All administration groups had a significantly higher degree of EPSC inhibition than the control groups (P < 0.01), and the early administration II group had a significantly greater degree of EPSC inhibition than the late administration group (P < 0.01). Conclusions Early CS exposure after birth affects the synaptic plasticity of PF-PCs in the cerebellum of young rats, which persists after drug withdrawal.

关键词

头孢呋辛钠 / 小脑 / 浦肯野细胞 / 突触可塑性 / 幼鼠

Key words

Cefuroxime sodium / Cerebellum / Purkinje cell / Synaptic plasticity / Young rats

引用本文

导出引用
何海燕, 任颖鸽, 李凌, 晋芙莉, 杜永平, 张月萍. 头孢呋辛钠影响幼鼠平行纤维-浦肯野细胞的突触可塑性[J]. 中国当代儿科杂志. 2016, 18(6): 558-563 https://doi.org/10.7499/j.issn.1008-8830.2016.06.017
HE Hai-Yan, REN Ying-Ge, LI Ling, JIN Fu-Li, DU Yong-Ping, ZHANG Yue-Ping. Influence of cefuroxime sodium on synaptic plasticity of parallel fiber-Purkinje cells in young rats[J]. Chinese Journal of Contemporary Pediatrics. 2016, 18(6): 558-563 https://doi.org/10.7499/j.issn.1008-8830.2016.06.017

参考文献

[1] Schulman J, Dimand RJ, Lee HC, et al. Neonatal intensive care unit antibiotic use[J]. Pediatrics, 2015, 135(5): 826-833.
[2] 贺瑞萍, 郭永英. 抗生素类药物对神经系统的毒性反应[J]. 中国药事, 2004, 18(12): 774-775.
[3] Bercik P, Denou E, Collins J, et al. The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice[J]. Gastroenterology, 2011, 141(2): 599-609.
[4] House SA, Goodman DC, Weinstein SJ, et al. Prescription use among children with autism spectrum disorders in Northern New England: intensity and small area variation[J]. J Pediatr, 2016, 169: 277-283.e2.
[5] de Louvois J, Mulhall A, Hurley R. Cefuroxime in the treatment of neonates[J]. Arch Dis Child, 1982(1), 57: 59-62.
[6] Riedel MC, Ray KL, Dick AS, et al. Meta-analytic connectivity and behavioral parcellation of the human cerebellum[J]. NeuroImage, 2015, 117: 327-342.
[7] Zhang Y, Magnus G, Han VZ. Synaptic dynamics and long-time plasticity at synapses of Purkinje cells onto neighboring Purkinje cells of a mormyrid fish: A dual cell recording study[J]. Neuroscience, 2012, 225: 199-212.
[8] 孙瑞元, 马越鸣, 洪宗元. 药理实验设计中的剂量问题[M]// 徐叔云, 卞如濂, 陈修. 药理实验方法学. 第3版. 北京: 人民卫生出版社, 2002: 202-204.
[9] 李芳梅, 曹凤美, 晁兰芳. 抗生素对神经和心肺的副作用 [J]. 医学理论与实践, 2001, 14(12): 1228-1229.
[10] Kim CH, Oh SH, Lee JH, et al. Lobule-specific membrane excitability of cerebellar Purkinje cells[J]. J Physiol, 2012, 590(Pt2): 273-288.
[11] Masoli S, Solinas S, D'Angelo E. Action potential processing in a detailed Purkinje cell model reveals a critical role for axonal compartmentalization[J]. Front Cell Neurosci, 2015, 9: 1-22.
[12] 邓敏, 王云甫, 胡芳, 等. 不同种类抗生素影响重症肌无力小鼠神经肌肉接头处的传递功能[J]. 中国临床康复, 2005, 9(17): 233-235.
[13] Johnston MV, Ishida A, Ishida WN, et al. Plasticity and injury in the developing brain[J]. Brain Dev, 2009, 31(1): 1-10.
[14] Cohen-Cory S. The developing synapse: construction and modulation of synaptic structures and circuits[J]. Science, 2002, 298(5594): 770-776.
[15] Schonewille M, Gao Z, Boele HJ, et al. Reevaluating the role of LTD in cerebellar motor learning[J]. Neuron, 2011, 70(1): 43-50.
[16] Gao Z, van Beugen BJ, De Zeeuw CI, et al. Distributed synergistic plasticity and cerebellar learning[J]. Nat Rev Neurosci, 2012, 13(9): 619-635.
[17] Ito M, Yamaguchi K, Nagao S, et al. Long-term depression as a model of cerebellar plasticity[J]. Prog Brain Res, 2014, 210: 1-30.
[18] Mapelli L, Pagani M, Garrido JA, et al. Integrated plasticity at inhibitory and excitatory synapses in the cerebellar circuit[J]. Front Cell Neursci, 2015, 9: 169.
[19] Linden DJ, Dickinson MH, Smeyne M, et al. A long-term depression of AMPA currents in cultured cerebellar Purkinje neurons[J]. Neuron, 1991, 7(1): 81-89.
[20] Kohda K, Kakegawa W, Yuzaki M. Unlocking the secrets of the δ2 glutamate receptor: A gatekeeper for synaptic plasticity in the cerebellum[J]. Commun Integr Biol, 2013, 6(6): e26466.
[21] D'Angelo E. The organization of plasticity in the cerebellar cortex: from synapses to control[M]//Ramnani N. Prog Brain Res(Vol.210). Amsterda: Elsevier Science BV, 2014: 31-58.
[22] Zhao LS, Yin R, Wei BB, et al. Comparative pharmacokinetics of cefuroxime lysine after single intravenous, intraperitoneal, and intramuscular administration to rats[J]. Acta Pharmacol Sin, 2012, 33(11): 1348-1352.
[23] 安备, 杜湘珂, 霍天龙,等. SD大鼠腹腔注射及尾静脉注射18F-FDG PET/CT成像对比研究[J]. 医学研究杂志, 2013, 42(5): 48-52.
[24] Soll RF, Edwards WH. Antibiotic use in neonatal intensive care[J]. Pediatrics, 2015, 135(5): 928-929.
[25] 关小萍, 梁春华, 陈延欢. 新生儿肺炎疗效及肠道微生态的研究 [J]. 中国实用医药, 2009, 4(21): 15-17.
[26] 王凤科. 广谱抗生素对感染性疾病患者肠道微生态的影响[J]. 吉林医学, 2010, 31(32): 5726-5728.
[27] 栾娜, 孙运波, 段峰. 头孢曲松钠对菌血症小鼠肠道膜菌群的影响[J]. 齐鲁医学杂志, 2007, 22(4): 326-328.

PDF(1760 KB)

Accesses

Citation

Detail

段落导航
相关文章

/