胎龄联合出生体重对新生儿遗传代谢病相关代谢物的影响

易芳, 王玲, 王梅, 袁雪莲, 万华靖, 李佳圆

中国当代儿科杂志 ›› 2018, Vol. 20 ›› Issue (5) : 352-357.

PDF(997 KB)
PDF(997 KB)
中国当代儿科杂志 ›› 2018, Vol. 20 ›› Issue (5) : 352-357. DOI: 10.7499/j.issn.1008-8830.2018.05.003
论著·临床研究

胎龄联合出生体重对新生儿遗传代谢病相关代谢物的影响

  • 易芳1,2, 王玲2, 王梅3, 袁雪莲1, 万华靖2, 李佳圆1
作者信息 +

Combined effect of gestational age and birth weight on metabolites related to inherited metabolic diseases in neonates

  • YI Fang1,2, WANG Ling2, WANG Mei3, YUAN Xue-Lian1, WAN Hua-Jing2, LI Jia-Yuan1
Author information +
文章历史 +

摘要

目的 探讨胎龄联合出生体重对遗传代谢病(IMD)相关代谢物的影响。方法 从2014~2016年间参加IMD筛查的38 931名新生儿中,随机抽取3381例经随访排除IMD疾病的新生儿样本,按胎龄联合出生体重分为极早产适于胎龄儿组(n=12)、早产小于胎龄儿组(n=18)、早产适于胎龄儿组(n=219)、早产大于胎龄儿组(n=18)、足月小于胎龄儿组(n=206)、足月适于胎龄儿组(n=2 677)、足月大于胎龄儿组(n=231)。采集各组新生儿出生3~7 d充分哺乳后的足跟血,采用串联质谱检测干血斑中17种IMD关键代谢指标水平。利用Spearman秩相关分析各影响因素与代谢指标的相关性,采用协方差分析各组代谢指标水平差异。结果 在控制了新生儿生理及病理状态等相关因素后,与足月适于胎龄儿组相比,亮氨酸\异亮氨酸\羟基脯氨酸、缬氨酸在极早产适于胎龄儿、早产小于胎龄儿、早产适于胎龄儿组,鸟氨酸在早产适于胎龄儿组,脯氨酸在极早产、早产适于胎龄儿组中水平明显下降(P < 0.05);苯丙氨酸在极早产、早产适于胎龄儿组,甲硫氨酸在早产小于胎龄儿组,酪氨酸在早产适于胎龄儿组中水平则明显升高(P < 0.05);游离肉碱、乙酰肉碱、丙酰肉碱在早产小于胎龄儿、早产适于胎龄儿组,十八碳烯酰肉碱在早产小于胎龄儿组中水平明显升高(P < 0.05)。大部分肉碱指标在早产和足月的小于胎龄儿分别与适于胎龄儿、大于胎龄儿组间比较中差异有统计学意义(P < 0.05)。结论 胎龄不足和低出生体重均会造成IMD筛查指标异常,故在判读IMD筛查指标异常时应结合胎龄和体重情况综合判断。

Abstract

Objective To study the combined effect of gestational age and birth weight on metabolites related to inherited metabolic diseases (IMD). Methods A total of 3 381 samples ruled out of IMD by follow-up were randomly selected from 38931 newborns who participated in the neonatal IMD screening during 2014-2016. The 3 381 neonates were categorized into seven groups according to their gestational age and birth weight:extremely preterm appropriatefor-gestational age (AGA) group (n=12), preterm small-for-gestational age (SGA) group (n=18), preterm AGA group (n=219), preterm large-for-gestational age (LGA) group (n=18), full-term SGA group (n=206), full-term AGA group (n=2677), and full-term LGA group (n=231). Heel blood samples were collected from each group on postnatal days 3-7 after adequate breastfeeding. Levels of 17 key IMD-related metabolic indices in dried blood spots were measured using tandem mass spectrometry. Spearman's correlation analysis was used to investigate the relationships between 17 IMDrelated metabolic indices and their influencing factors, while covariance analysis was used to compare the metabolic indices between these groups. Results After adjusting the influencing factors such as physiological and pathological status, compared with the full-term AGA group, the extremely preterm AGA, preterm SGA, and preterm AGA groups had significantly reduced levels of leucine\isoleucine\hydroxyproline and valine (P < 0.05); the preterm AGA group had a significantly decreased ornithine level (P < 0.05); the extremely preterm AGA and preterm AGA groups had a significantly reduced proline level (P < 0.05). Besides, the phenylalanine level in the extremely preterm AGA and preterm AGA groups, the methionine level in the preterm SGA group, and the tyrosine level in the preterm AGA group all significantly increased (P < 0.05). The increased levels of free carnitine, acetylcarnitine, and propionylcarnitine were found in the preterm SGA and preterm AGA groups. The oleylcarnitine level also significantly increased in the preterm SGA group (P < 0.05). Most carnitine indices showed significant differences between the SGA group and the AGA/LGA group in both preterm and full-term infants (P < 0.05). Conclusions Low gestational age and low birth weight may result in abnormal results in IMD screening. Therefore, gestational age and birth weight should be considered to comprehensively judge the abnormal results in IMD screening.

关键词

遗传代谢病 / 代谢物 / 胎龄 / 出生体重 / 新生儿

Key words

Inherited metabolic diseases / Metabolite / Gestational age / Birth weight / Neonate

引用本文

导出引用
易芳, 王玲, 王梅, 袁雪莲, 万华靖, 李佳圆. 胎龄联合出生体重对新生儿遗传代谢病相关代谢物的影响[J]. 中国当代儿科杂志. 2018, 20(5): 352-357 https://doi.org/10.7499/j.issn.1008-8830.2018.05.003
YI Fang, WANG Ling, WANG Mei, YUAN Xue-Lian, WAN Hua-Jing, LI Jia-Yuan. Combined effect of gestational age and birth weight on metabolites related to inherited metabolic diseases in neonates[J]. Chinese Journal of Contemporary Pediatrics. 2018, 20(5): 352-357 https://doi.org/10.7499/j.issn.1008-8830.2018.05.003

参考文献

[1] 林书祥, 舒剑波, 王朝, 等. 15851例遗传代谢病高危患儿的临床分析[J]. 中国当代儿科杂志, 2017, 19(12):1243-1247.
[2] Garg U, Dasouki M. Expanded newborn screening of inherited metabolic disorders by tandem mass spectrometry:clinical and laboratory aspects[J]. Clin Biochem, 2006, 39(4):315-332.
[3] Tarini BA, Christakis DA, Welch HG. State newborn screening in the tandem mass spectrometry era:more tests, more falsepositive results[J]. Pediatrics, 2006, 118(2):448-456.
[4] Ryckman KK, Berberich SL, Shchelochkov OA, et al. Clinical and environmental influences on metabolic biomarkers collected for newborn screening[J]. Clin Biochem, 2013, 46(1-2):133-138.
[5] Oladipo OO, Weindel AL, Saunders AN, et al. Impact of premature birth and critical illness on neonatal range of plasma amino acid concentrations determined by LC-MS/MS[J]. Mol Genet Metab, 2011, 104(4):476-479.
[6] Slaughter JL, Meinzen-Derr J, Rose SR, et al. The effects of gestational age and birth weight on false-positive newbornscreening rates[J]. Pediatrics, 2010, 126(5):910-916.
[7] 邵肖梅, 叶鸿瑁, 丘小汕. 实用新生儿学[M]. 第4版. 北京:人民卫生出版社, 2011:245-247.
[8] 朱丽, 张蓉, 张淑莲, 等. 中国不同胎龄新生儿出生体重曲线研制[J]. 中华儿科杂志, 2015, 53(2):97-103.
[9] 卫妇社[2010] 96号. 新生儿遗传代谢病筛查血片采集技术规范[S].
[10] Bennett MJ. Follow-up testing for metabolic diseases identified by expanded newborn screening using tandem mass spectrometry[M]. Washington, DC:The National Academy of Clinical Biochemistry, 2008:12-15.
[11] Wilson K, Hawken S, Ducharme R, et al. Metabolomics of prematurity:analysis of patterns of amino acids, enzymes, and endocrine markers by categories of gestational age[J]. Pediatr Res, 2014, 75(2):367-373.
[12] Liu J, Chen XX, Li XW, et al. Metabolomic research on newborn infants with intrauterine growth restriction[J]. Medicine (Baltimore), 2016, 95(17):e3564.
[13] Alexandre-Gouabau MC, Courant F, Le Gall G, et al. Offspring metabolomic response to maternal protein restriction in a rat model of intrauterine growth restriction (IUGR)[J]. J Proteome Res, 2011, 10(7):3292-3302.
[14] 林飞, 徐钰琪, 阙婷, 等. 新生黄疸患儿与早产低体质量儿体内氨基酸水平变化原因分析[J]. 检验医学与临床, 2014, 11(21):2947-2949.
[15] Mandour I, El Gayar D, Amin M, et al. Amino acid and acylcarnitine profiles in premature neonates:a pilot study[J]. Indian J Pediatr, 2013, 80(9):736-744.
[16] Liu Q, Wu J, Shen W, et al. Analysis of amino acids and acyl carnitine profiles in low birth weight, preterm, and small for gestational age neonates[J]. J Matern Fetal Neonatal Med, 2017, 30(22):2697-2704.
[17] 董丽萍, 牟凯, 朱峰, 等. 山东鲁中地区新生儿体内游离肉碱及酰基肉碱的变化特点[J]. 中国妇幼保健, 2016, 31(13):2671-2675.
[18] Gucciardi A, Zaramella P, Costa I, et al. Analysis and interpretation of acylcarnitine profiles in dried blood spot and plasma of preterm and full-term newborns[J]. Pediatr Res, 2015, 77(1-1):36-47.


PDF(997 KB)

Accesses

Citation

Detail

段落导航
相关文章

/