幼年型粒单核细胞白血病治疗进展

蔡玉丽, 章婧嫽, 竺晓凡

中国当代儿科杂志 ›› 2018, Vol. 20 ›› Issue (11) : 958-963.

PDF(1397 KB)
PDF(1397 KB)
中国当代儿科杂志 ›› 2018, Vol. 20 ›› Issue (11) : 958-963. DOI: 10.7499/j.issn.1008-8830.2018.11.016
综述

幼年型粒单核细胞白血病治疗进展

  • 蔡玉丽, 章婧嫽, 竺晓凡
作者信息 +

Advances in the treatment of juvenile myelomonocytic leukemia

  • CAI Yu-Li, ZHANG Jing-Liao, ZHU Xiao-Fan
Author information +
文章历史 +

摘要

幼年型粒单核细胞白血病(JMML)是一种罕见的儿科特有的慢性髓系白血病,兼有骨髓增生异常综合征(MDS)和骨髓增殖性肿瘤(MPN)的特征。其恶性程度高,疗效差。JMML患儿对常规化疗反应较差,造血干细胞移植(HSCT)是目前唯一可能的治愈方法。近年来,针对Ras信号通路中突变基因的靶向治疗及多基因CpG岛异常甲基化的去甲基化治疗的研究取得了重要进展。现就JMML治疗及疗效评价作一综述。

Abstract

Juvenile myelomonocytic leukemia (JMML) is a rare chronic myeloid leukemia in children and has the features of both myelodysplastic syndrome and myeloproliferative neoplasm. It is highly malignant and has a poor treatment outcome. Children with JMML have a poor response to conventional chemotherapy. At present, hematopoietic stem cell transplantation is the only possible cure for this disease. In recent years, significant progress has been made in targeted therapy for mutant genes in the Ras signaling pathway and demethylation treatment of aberrant methylation of polygenic CpG islands. This article reviews the treatment and efficacy evaluation of JMML.

关键词

幼年型粒单核细胞白血病 / 造血干细胞移植 / 分子靶向治疗 / 去甲基化 / 儿童

Key words

Juvenile myelomonocytic leukemia / Hematopoietic stem cell transplantation / Molecular targeted therapy / Demethylation / Child

引用本文

导出引用
蔡玉丽, 章婧嫽, 竺晓凡. 幼年型粒单核细胞白血病治疗进展[J]. 中国当代儿科杂志. 2018, 20(11): 958-963 https://doi.org/10.7499/j.issn.1008-8830.2018.11.016
CAI Yu-Li, ZHANG Jing-Liao, ZHU Xiao-Fan. Advances in the treatment of juvenile myelomonocytic leukemia[J]. Chinese Journal of Contemporary Pediatrics. 2018, 20(11): 958-963 https://doi.org/10.7499/j.issn.1008-8830.2018.11.016

参考文献

[1] Arber DA, Orazi A, Hasserjian R, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia[J]. Blood, 2016, 127(20):2391-2405.
[2] Niemeyer C M,Arico M,Basso G,et al.Chronic myelomonocytic leukemia in childhood:a retrospective analysis of 110cases. European Working Group on myelodysplastic syndromes in childhood(EWOG-MDS)[J]. Blood, 1997, 89(10):3534-3543.
[3] Stieglitz E, Mazor T, Olshen AB, et al. Genome-wide DNA methylation is predictive of outcome in juvenile myelomonocytic leukemia[J]. Nat Commun, 2017, 8(1):2127.
[4] Stieglitz E, Taylor-Weiner AN, Chang TY, et al. The genomic landscape of juvenile myelomonocytic leukemia[J]. Nat Genet, 2015, 47(11):1326-1333.
[5] Stieglitz E, Troup CB, Gelston LC, et al. Subclonal mutations in SETBP1 confer a poor prognosis in juvenile myelomonocytic leukemia[J]. Blood, 2015, 125(3):516-524.
[6] Stieglitz E, Mazor T, Olshen AB, et al. Genome-wide DNA methylation is predictive of outcome in juvenile myelomonocytic leukemia[J]. Nat Commun, 2017, 8(1):2127.
[7] Locatelli F, Crotta A, Ruggeri A, et al. Analysis of risk factors influencing outcomes after cord blood transplantation in children with juvenile myelomonocytic leukemia:a EUROCORD, EBMT, EWOG-MDS, CIBMTR study[J]. Blood, 2013, 122(12):2135-2141.
[8] Locatelli F, Algeri M, Merli P. Novel approaches to diagnosis and treatment of juvenile myelomonocytic leukemia[J]. Expert Rev Hematol, 2018, 11(2):129-143.
[9] Yabe M, Ohtsuka Y, Watanabe K, et al. Transplantation for juvenile myelomonocytic leukemia:a retrospective study of 30 children treated with a regimen of busulfan, fludarabine, and melphalan[J]. Int J Hematol, 2015, 101(2):184-190.
[10] Olk-Batz C, Poetsch AR, Nöllke P, et al. Aberrant DNA methylation characterizes juvenile myelomonocytic leukemia with poor outcome[J]. Blood, 2011, 117(18):4871-4880.
[11] Poetsch AR, Lipka DB, Witte T, et al. RASA4 is a target of DNA hypermethylation in resistant juvenile myelomonocytic leukemia[J]. Epigenetics, 2014, 9(9):1252-1260.
[12] Locatelli F, Niemeyer CM. How I treat juvenile myelomonocytic leukemia[J]. Blood, 2015, 125(7):1083-1090.
[13] Matsuda K, Yoshida N, Miura S, et al. Long-term haematological improvement after non-intensive or no chemotherapy in juvenile myelomonocytic leukaemia and poor correlation with adult myelodysplasia spliceosome-related mutations[J]. Br J Haematol, 2012, 157(5):647-650.
[14] Locatelli F, Nöllke P, Zecca M, et al. Hematopoietic stem cell transplantation (HSCT) in children with juvenile myelomonocytic leukemia(JMML):results of the EWOG-MDS/EBMT trial[J]. Blood, 2005, 105(1):410-419.
[15] Eapen M, Klein JP, Ruggeri A, et al. Impact of allele-level HLA matching on outcomes after myeloablative single unit umbilical cord blood transplantation for hematologic malignancy[J]. Blood, 2014, 123(1):133-140.
[16] Tang X, Fang J, Yu J, et al. Clinical outcomes of unrelated cord blood transplantation in children with malignant and nonmalignant diseases:Multicenter experience in China[J]. Pediatr Transplant, 2018, 22(1). doi:10.1111/petr.13090.
[17] Diaz MA, Pérez-Martínez A, Herrero B, et al. Prognostic factors and outcomes for pediatric patients receiving an haploidentical relative allogeneic transplant using CD3/CD19-depleted grafts[J]. Bone Marrow Transplant, 2016, 51(9):1211-1216.
[18] Lang P, Teltschik HM, Feuchtinger T, et al. Transplantation of CD3/CD19 depleted allografts from haploidentical family donors in paediatric leukaemia[J]. Br J Haematol, 2014, 165(5):688-698.
[19] Bartelink IH, van Reiji E, Gerhardt C, et al. Fludarabine and exposure-targeted busulfan compares favorably with busulfan/cyclophosphamide based regimens in pediatric HSCT:maitaining efficacy with less toxicity[J]. Biol Blood Marrow Transplant, 2013, 20(3):345-353.
[20] Yabe M, Sako M, Yabe H, et al. A conditioning regimen of busulfan, fludarabine, and melphalan for allogeneic stem cell transplantation in children with juvenile myelomonocytic leukemia[J]. Pediatr Transplant, 2008, 12(8):862-867.
[21] Peng ZY, Feng XQ, He YL, et al. Hypomethylation of decitabine improved outcomes of hematopoietic stem cell transplantation in children with juvenile myelomonocytic leukemia[J]. Blood, 2017, 130:3232.
[22] Niemeyer CM, Loh ML, Cseh A, et al. Criteria for evaluating response and outcome in clinical trials for children with juvenile myelomonocytic leukemia[J]. Haematologica, 2015, 100(1):17-22.
[23] Niemeyer CM. RAS diseases in children[J]. Haematologica, 2014, 99(11):1653-1662.
[24] Liu W, Yu WM, Zhang J, et al. Inhibition of the Gab2/PI3K/mTOR signaling ameliorates myeloid malignancy caused by Ptpn11(Shp2) gain-of-function mutations[J]. Leukemia, 2017, 31(6):1415-1422.
[25] Calvo KR, Price S, Braylan RC, et al. JMML and RALD (Rasassociated autoimmune leukoproliferative disorder):common genetic etiology yet clinically distinct entities[J]. Blood, 2015, 125(18):2753-2758.
[26] Upadhyay SY, De Oliveira SN, Moore TB. Use of rapamycin in a patient with juvenile myelomonocytic leukemia:A case report[J]. J Investig Med High Impact Case Rep, 2017, 5(3):2324709617728528.
[27] Tasian SK, Casas JA, Posocco D, et al. Mutation-specific signaling profiles and kinase inhibitor sensitivities of juvenile myelomonocytic leukemia revealed by induced pluripotent stem cells[J]. Leukemia, 2018 Jun 8. doi:10.1038/s41375-018-0169-y.
[28] Loh ML, Tasian SK, Rabin KR, et al. A phase 1 dosing study of ruxolitinib in children with relapsed or refractory solid tumors, leukemias, or myeloproliferative neoplasms:A Children's Oncology Group phase 1 consortium study (ADVL1011)[J]. Pediatr Blood Cancer, 2015, 62(10):1717-1724.
[29] Lyubynska N, Gorman MF, Lauchle JO, et al. A MEK inhibitor abrogates myeloproliferative disease in Kras mutant mice[J]. Sci Transl Med, 2011, 3(76):76ra27.
[30] Chang T, Krisman K, Theobald EH, et al. Sustained MEK inhibition abrogates myeloproliferative disease in Nf1 mutant mice[J]. J Clin Invest, 2016, 126(1):404.
[31] Kong GY, Wunderlich M, Yang D, et al. Combined MEK and JAK inhibition abrogates murine myeloproliferative neoplasm[J]. Clin Invest, 2014,124(6):2762-2773.
[32] de Vries AC, Zwaan CM, van den Heuvel-Eibrink MM. Molecular basis of juvenile myelomonocytic leukemia[J]. Haematologica, 2010, 95(2):179-182.
[33] Bernard F, Thomas C, Emile JF, et al. Transient hematologic and clinical effect of E21R in a child with end-stage juvenile myelomonocytic leukemia[J]. Blood, 2002, 99(7):2615-2616.
[34] Stieglitz E, Ward AF, Gerbing RB, et al. Phase Ⅱ/Ⅲ trial of a pre-transplant farnesyl transferase inhibitor in juvenile myelomonocytic leukemia:a report from the Children's Oncology Group[J]. Pediatr Blood Cancer, 2015, 62(4):629-636.
[35] Germano G, Frapolli R, Belgiovine C, et al. Role of macrophage targeting in the antitumor activity of trabectedin[J]. Cancer Cell, 2013, 23(2):249-262.
[36] Romano M, Della Porta MG, Gallì A, et al. Antitumour activity of trabectedin in myelodysplastic/myeloproliferative neoplasms[J]. Br J Cancer, 2017, 116(3):335-343.
[37] Dong L, Yu WM, Zheng H, et al. Leukaemogenic effects of Ptpn11 activating mutations in the stem cell microenvironment[J]. Nature, 2016, 539(7628):304-308.
[38] Leoncini PP, Bertaina A, Papaioannou D, et al. MicroRNA fingerprints in juvenile myelomonocytic leukemia (JMML) identified miR-150-5p as a tumor suppressor and potential target for treatment[J]. Oncotarget, 2016, 7(34):55395-55408.
[39] Mulero-Navarro S, Sevilla A, Roman AC, et al. Myeloid dysregulation in a human induced pluripotent stem cell model of PTPN11-associated juvenile myelomonocytic leukemia[J]. Cell Rep, 2015, 13(3):504-515.
[40] Flotho C, Sommer S, Lübbert M. DNA-hypomethylating agents as epigenetic therapy before and after allogeneic hematopoietic stem cell transplantation in myelodysplastic syndromes and juvenile myelomonocytic leukemia[J]. Semin Cancer Biol, 2018, 51:68-79.
[41] Gerds AT, Gooley TA, Estey EH, et al. Pretransplantation therapy with azacitidine vs induction chemotherapy and posttransplantation outcome in patients with MDS[J]. Biol Blood Marrow Transplant, 2012, 18(8):1211-1218.
[42] Cseh A, Niemeyer CM, Yoshimi A, et al. Bridging to transplant with azacitidine in juvenile myelomonocytic leukemia:a retrospective analysis of the EWOGMDS study group[J]. Blood, 2015, 125(14):2311-2313.


PDF(1397 KB)

Accesses

Citation

Detail

段落导航
相关文章

/