
持续性肺膨胀在<34周早产儿中应用的Meta分析
Application of sustained lung inflation in preterm infants with a gestational age of < 34 weeks: a Meta analysis
目的 对持续性肺膨胀(SLI)在 < 34周早产儿中的应用效果进行系统评价。方法 计算机检索PubMed、Embase、Cochrane图书馆、中国知网、万方数据库、中国生物医学文献数据库、中国期刊全文数据库、中国科技期刊数据库,收集SLI对比单纯无创正压通气运用于早产儿的随机对照研究,采用Revman 5.3统计软件对符合纳入标准的临床研究进行Meta分析。结果 共纳入9项随机对照研究,合计1 432例早产儿(胎龄:23~33.7周)。Meta分析结果显示:与对照组相比,SLI组72 h内需机械通气率较对照组低(51.9% vs 56.9%;RR=0.91,P=0.04,95% CI:0.83~0.99);两组病死率、肺表面活性物质使用率及相关并发症发生率(支气管肺发育不良、气胸、Ⅲ~Ⅳ级颅内出血)差异无统计学意义(P > 0.05)。结论 SLI可减低 < 34周早产儿机械通气的使用,且未增加其余相关并发症的风险。
Objective To systematically review the effect of sustained lung inflation (SLI) in preterm infants with a gestational age of < 34 weeks. Methods PubMed, Embase, Cochrane Library, China National Knowledge Infrastructure, Wanfang Database, China Biology Medicine disc, Chinese Journal Full-text Database, and Weipu Database were searched for randomized controlled trials (RCTs) on the application of SLI versus noninvasive positive pressure ventilation alone in preterm infants. Revman 5.3 was used to perform a Meta analysis for the RCTs which met the inclusion criteria. Results A total of 9 RCTs were included, with 1 432 preterm infants in total (with a gestational age of 23-33.7 weeks). The Meta analysis showed that compared with the control group, the SLI group had a significantly lower proportion of the infants who needed mechanical ventilation within 72 hours (51.9% vs 56.9%, RR=0.91, P=0.04, 95%CI:0.83-0.99). There were no significant differences between the two groups in the mortality rate, rate of use of pulmonary surfactant, and incidence rates of related complications (bronchopulmonary dysplasia, pneumothorax, and grade III-IV intracranial hemorrhage) (P > 0.05). Conclusions SLI can reduce the use of mechanical ventilation in preterm infants with a gestational age of < 34 weeks and does not increase the risk of other complications.
[1] te Pas AB, Siew M, Wallace MJ, et al. Establishing functional residual capacity at birth:the effect of sustained inflation and positive end-expiratory pressure in a preterm rabbit model[J]. Pediatr Res, 2009, 65(5):537-541.
[2] te Pas AB, Siew M, Wallace MJ, et al. Effect of sustained inflation length on establishing functional residual capacity at birth in ventilated premature rabbits[J]. Pediatr Res, 2009, 66(3):295-300.
[3] 杨传忠, 朱小瑜. 持续性肺膨胀在新生儿复苏中的应用[J]. 中华实用儿科临床杂志, 2017, 32(14):1041-1044.
[4] Lindner W, Högel J, Pohlandt F. Sustained pressure-controlled inflation or intermittent mandatory ventilation in preterm infants in the delivery room? A randomized, controlled trial on initial respiratory support via nasopharyngeal tube[J]. Acta Paediatr, 2005, 94(3):303-309.
[5] Harling AE, Beresford MW, Vince GS, et al. Does sustained lung inflation at resuscitation reduce lung injury in the preterm infant?[J]. Arch Dis Child Fetal Neonatal Ed, 2005, 90(5):F406-F410.
[6] te Pas AB, Walther FJ. A randomized, controlled trial of delivery-room respiratory management in very preterm infants[J]. Pediatrics, 2007, 120(2):322-329.
[7] Lista G, Boni L, Scopesi F, et al. Sustained lung inflation at birth for preterm infants:a randomized clinical trial[J]. Pediatrics, 2015, 135(2):e457-e464.
[8] Schwaberger B, Pichler G, Avian A, et al. Do sustained lung inflations during neonatal resuscitation affect cerebral blood volume in preterm infants? A randomized controlled pilot study[J]. PLoS One, 2015, 10(9):e0138964.
[9] El-Chimi MS, Awad HA, El-Gammasy TM, et al. Sustained versus intermittent lung inflation for resuscitation of preterm infants:a randomized controlled trial[J]. J Matern Fetal Neonatal Med, 2017, 30(11):1273-1278.
[10] Jiravisitkul P, Rattanasiri S, Nuntnarumit P. Randomised controlled trial of sustained lung inflation for resuscitation of preterm infants in the delivery room[J]. Resuscitation, 2017, 111:68-73.
[11] Ngan AY, Cheung PY, Hudson-Mason A, et al. Using exhaled CO 2 to guide initial respiratory support at birth:a randomised controlled trial[J]. Arch Dis Child Fetal Neonatal Ed, 2017, 102(6):F525-F531.
[12] Kirpalani H, Ratcliffe SJ, Keszler M, et al. Effect of sustained inflations vs intermittent positive pressure ventilation on bronchopulmonary dysplasia or death among extremely preterm infants:the SAIL randomized clinical trial[J]. JAMA, 2019, 321(12):1165-1175.
[13] Schmölzer GM, Kumar M, Aziz K, et al. Sustained inflation versus positive pressure ventilation at birth:a systematic review and meta-analysis[J]. Arch Dis Child Fetal Neonatal Ed, 2015, 100(4):F361-F368.
[14] Sweet DG, Carnielli V, Greisen G, et al. European consensus guidelines on the management of respiratory distress syndrome-2019 update[J]. Neonatology, 2019, 115(4):432-450.
[15] Oremus M, Wolfson C, Perrault A, et al. Interrater reliability of the modified Jadad quality scale for systematic reviews of Alzheimer's disease drug trials[J]. Dement Geriatr Cogn Disord, 2001, 12(3):232-236.
[16] te Pas AB, Walther FJ. Ventilation of very preterm infants in the delivery room[J]. Curr Pediatr Rev, 2006, 2(3):187-197.
[17] Lista G, Fontana P, Castoldi F. Does sustained lung inflation at birth improve outcome of preterm infants at risk for respiratory distress syndrome?[J]. Neonatology, 2011, 99(1):45-50.
[18] Fischer HS, Schmölzer GM, Cheung PY, et al. Sustained inflations and avoiding mechanical ventilation to prevent death or bronchopulmonary dysplasia:a meta-analysis[J]. Eur Respir Rev, 2018, 27(150). pii:180083.
[19] Fuchs H, Lindner W, Buschko A, et al. Cerebral oxygenation in very low birth weight infants supported with sustained lung inflations after birth[J]. Pediatr Res, 2011, 70(2):176-180.
[20] Sobotka KS, Hooper SB, Allison BJ, et al. An initial sustained inflation improves the respiratory and cardiovascular transition at birth in preterm lambs[J]. Pediatr Res, 2011, 70(1):56-60.
广东省东莞市社会科技发展(重点)项目(201750715007468)。