
高胆红素血症新生儿肠道菌群特点及与β-葡萄糖醛酸苷酶活性的相关性
Characteristics of gut microbiota and its association with the activity of β-glucuronidase in neonates with hyperbilirubinemia
目的 探讨高胆红素血症新生儿肠道菌群特点及与β-葡萄糖醛酸苷酶(β-glucuronidase,β-GD)活性的关系。方法 选取2018年1~12月入院治疗的高胆红素血症新生儿50例为高胆红素血症组,选取非高胆红素血症新生儿30例为对照组。通过16S rRNA高通量测序方法分析两组新生儿肠道菌群的差异。通过酚酞-葡萄糖醛酸底物法测定高胆红素血症新生儿治疗前后肠道内的β-GD活性。结果 对治疗前高胆红素血症组和对照组肠道菌群分布属水平进行比较,发现两组间有52种细菌的丰度差异有统计学意义(P < 0.05)。对治疗后第3天高胆红素血症组和对照组入组3 d后肠道菌群分布属水平进行比较,发现两组间有42种细菌的丰度差异有统计学意义(P < 0.05)。高胆红素血症组新生儿治疗后,埃希氏菌属和葡萄球菌属在肠道内的含量明显低于治疗前(P < 0.05),粪便中β-GD活性较治疗前明显降低(P < 0.05)。高胆红素血症新生儿治疗前后粪便β-GD活性与葡萄球菌属和埃希氏菌属丰度均呈正相关(rs=0.5948~0.7245,均P < 0.01)。结论 高胆红素血症新生儿和非高胆红素血症新生儿肠道菌群存在差异。高胆红素血症新生儿粪便中β-GD活性与差异菌葡萄球菌属和埃希氏菌属丰度呈正相关。肠道菌群可能通过调节β-GD活性影响新生儿高胆红素血症的发生,通过对新生儿肠道菌群和β-GD活性进行测定和分析,可能对早期评估新生儿高胆红素血症的发生有一定的临床意义。
Objective To study the characteristics of gut microbiota and its association with the activity of β-glucuronidase (β-GD) in neonates with hyperbilirubinemia. Methods A total of 50 neonates with hyperbilirubinemia who were admitted in January to December, 2018, were enrolled as the hyperbilirubinemia group, and 30 neonates without hyperbilirubinemia were enrolled as the control group. The 16S rRNA high-throughput sequencing method was used to compare gut microbiota between the two groups. The phenolphthalein-glucuronic acid substrate method was used to measure the activity of β-GD in the intestinal tract of neonates with hyperbilirubinemia before and after treatment. Results The comparison of the distribution of gut microbiota at the genus level showed a significant difference in the abundance of 52 bacteria between the hyperbilirubinemia and control groups before treatment (P < 0.05), as well as a significant difference in the abundance of 42 bacteria between the hyperbilirubinemia group on day 3 after treatment and the control group on day 3 after enrollment (P < 0.05). After treatment, the hyperbilirubinemia group had significant reductions in the content of Escherichia and Staphylococcus in the intestinal tract (P < 0.05) and the activity of β-GD in feces (P < 0.05). The activity of β-GD in feces was positively correlated with the abundance of Staphylococcus and Escherichia before and after treatment in the neonates with hyperbilirubinemia (rs=0.5948-0.7245, P < 0.01). Conclusions There are differences in gut microbiota between the neonates with hyperbilirubinemia and those without hyperbilirubinemia. The activity of β-GD in feces is positively correlated with the abundance of Staphylococcus and Escherichia in neonates with hyperbilirubinemia. Gut microbiota may affect the development of neonatal hyperbilirubinemia by regulating the activity of β-GD. The determination and analysis of gut microbiota and β-GD activity may have certain clinical significance for the early assessment of the development of neonatal hyperbilirubinemia.
高胆红素血症 / 肠道菌群 / 16S rRNA高通量测序 / β-葡萄糖醛酸苷酶 / 新生儿
Hyperbilirubinemia / Gut microbiota / 16S rRNA high-throughput sequencing / β-glucuronidase / Neonate
[1] Bhutani VK, Vilms RJ, Hamerman-Johnson L. Universal bilirubin screening for severe neonatal hyperbilirubinemia[J]. J Perinatol, 2010, 30(Suppl):S6-S15. DOI:10.1038/jp.2010.98. PMID:20877410.
[2] Mir SE, van der Geest BAM, Been JV. Management of neonatal jaundice in low- and lower-middle-income countries[J]. BMJ Paediatr Open, 2019, 3(1):e000408. DOI:10.1136/bmjpo-2018-000408. PMID:30957028. PMCID:PMC6422246.
[3] Clemente JC, Ursell LK, Parfrey LW, et al. The impact of the gut microbiota on human health:an integrative view[J]. Cell, 2012, 148(6):1258-1270. DOI:10.1016/j.cell.2012.01.035. PMID:22424233. PMCID:PMC5050011.
[4] Lata J, Jurankova J, Kopacova M, et al. Probiotics in hepatology[J]. World J Gastroenterol, 2011, 17(24):2890-2896. DOI:10.3748/wjg.v17.i24.2890. PMID:21734800. PMCID:PMC3129503.
[5] Sommer F, Bäckhed F. The gut microbiota:masters of host development and physiology[J]. Nat Rev Microbiol, 2013, 11(4):227-238. DOI:10.1038/nrmicro2974. PMID:23435359.
[6] Friedrich MJ. Genomes of microbes inhabiting the body offer clues to human health and disease[J]. JAMA, 2013, 309(14):1447-1449. DOI:10.1001/jama.2013.2824. PMID:23571560.
[7] Palmer C, Bik EM, Digiulio DB, et al. Development of the human infant intestinal microbiota[J]. PLoS Biol, 2007, 5(7):e177. DOI:10.1371/journal.pbio.0050177. PMID:17594176. PMCID:PMC1896187.
[8] Mirghafourvand M, Seyedi R, Dost AJ, et al. Relationship between neonatal skin bilirubin level and severe jaundice with maternal, childbirth, and neonatal characteristics[J]. Iran J Neonatol, 2019, 10(2):61-67. DOI:10.22038/ijn.2019.33282.1478.
[9] Zubaida B, Cheema HA, Hashmi MA, et al. Spectrum of UGT1A1 variants in Pakistani children affected with inherited unconjugated hyperbilirubinemias[J]. Clin Biochem, 2019, 69:30-35. DOI:10.1016/j.clinbiochem.2019.05.012. PMID:31145902.
[10] Agans R, Rigsbee L, Kenche H, et al. Distal gut microbiota of adolescent children is different from that of adults[J]. FEMS Microbiol Ecol, 2011, 77(2):404-412. DOI:10.1111/j.1574-6941.2011.01120.x. PMID:21539582. PMCID:PMC4502954.
[11] Yatsunenko T, Rey FE, Manary MJ, et al. Human gut microbiome viewed across age and geography[J]. Nature, 2012, 486(7402):222-227. DOI:10.1038/nature11053. PMID:22699611. PMCID:PMC3376388.
[12] 中华医学会儿科学分会新生儿学组, 《中华儿科杂志》编辑委员会. 新生儿高胆红素血症诊断和治疗专家共识[J]. 中华儿科杂志, 2014, 52(10):745-748. DOI:10.3760/cma.j.issn.0578-1310.2014.10.006.
[13] Vítek L, Zelenka J, Zadinová M, et al. The impact of intestinal microflora on serum bilirubin levels[J]. J Hepatol, 2005, 42(2):238-243. DOI:10.1016/j.jhep.2004.10.012. PMID:15664250.
[14] Tuzun F, Kumral A, Duman N, et al. Breast milk jaundice:effect of bacteria present in breast milk and infant feces[J]. J Pediatr Gastroenterol Nutr, 2013, 56(3):328-332. DOI:10.1097/MPG.0b013e31827a964b. PMID:23132163.
[15] Thongaram T, Hoeflinger JL, Chow J, et al. Prebiotic galactooligosaccharide metabolism by probiotic lactobacilli and bifidobacteria[J]. J Agric Food Chem, 2017, 65(20):4184-4192. DOI:10.1021/acs.jafc.7b00851. PMID:28466641.
[16] Slusher TM, Zamora TG, Appiah D, et al. Burden of severe neonatal jaundice:a systematic review and meta-analysis[J]. BMJ Paediatr Open, 2017, 1(1):e000105. DOI:10.1136/bmjpo-2017-000105. PMID:29637134. PMCID:PMC5862199.
[17] Najati N, Gharebaghi MM, Mortazavi F. Underlying etiologies of prolonged icterus in neonates[J]. Pak J Biol Sci, 2010, 13(14):711-714. DOI:10.3923/pjbs.2010.711.714. PMID:21848064.
[18] Henny-Harry C, Trotman H. Epidemiology of neonatal jaundice at the University Hospital of the West Indies[J]. West Indian Med J, 2012, 61(1):37-42. PMID:22808564.
[19] Wen CC, Cai JZ, Lin CL, et al. Gradient elution liquid chromatography mass spectrometry determination of acetylcorynoline in rat plasma and its application to a pharmacokinetic study[J]. Xenobiotica, 2014, 44(8):743-748. DOI:10.3109/00498254.2014.887802. PMID:24512634.
[20] Ahlfors CE, Parker AE. Bilirubin binding contributes to the increase in total bilirubin concentration in newborns with jaundice[J]. Pediatrics, 2010, 126(3):e639-e643. DOI:10.1542/peds.2010-0614. PMID:20679308.
[21] Henao-Mejia J, Elinav E, Thaiss CA, et al. Role of the intestinal microbiome in liver disease[J]. J Autoimmun, 2013, 46:66-73. DOI:10.1016/j.jaut.2013.07.001. PMID:24075647.
[22] Redinbo MR. The microbiota, chemical symbiosis, and human disease[J]. J Mol Biol, 2014, 426(23):3877-3891. DOI:10.1016/j.jmb.2014.09.011. PMID:25305474. PMCID:PMC4252811.
[23] Gmeiner M, Kneifel W, Kulbe KD, et al. Influence of a synbiotic mixture consisting of Lactobacillus acidophilus 74-2 and a fructooligosaccharide preparation on the microbial ecology sustained in a simulation of the human intestinal microbial ecosystem (SHIME reactor)[J]. Appl Microbiol Biotechnol, 2000, 53(2):219-223. DOI:10.1007/s002530050011. PMID:10709985.
[24] Matamoros S, Gras-Leguen C, Le Vacon F, et al. Development of intestinal microbiota in infants and its impact on health[J]. Trends Microbiol, 2013, 21(4):167-173. DOI:10.1016/j.tim.2012.12.001. PMID:23332725.
[25] Pollet RM, D'Agostino EH, Walton WG, et al. An atlas of β-glucuronidases in the human intestinal microbiome[J]. Structure, 2017, 25(7):967-977.e5. DOI:10.1016/j.str.2017.05.003. PMID:28578872. PMCID:PMC5533298.
镇江市社会发展项目(SH2019055);江苏省妇幼保健项目(F201648)。