基因编辑治疗原发性免疫缺陷病

刘珊, 方姝煜, 安云飞

中国当代儿科杂志 ›› 2021, Vol. 23 ›› Issue (7) : 743-748.

PDF(1050 KB)
HTML
PDF(1050 KB)
HTML
中国当代儿科杂志 ›› 2021, Vol. 23 ›› Issue (7) : 743-748. DOI: 10.7499/j.issn.1008-8830.2103150
综述

基因编辑治疗原发性免疫缺陷病

  • 刘珊, 方姝煜, 安云飞
作者信息 +

Gene editing for the treatment of primary immunodeficiency disease

  • LIU Shan, FANG Shu-Yu, AN Yun-Fei
Author information +
文章历史 +

摘要

基因编辑是基于人工核酸酶的先进技术,可对基因组序列进行精确修饰。基因编辑在医药领域展现了巨大的应用前景,为疾病的治疗提供了新的精准治疗方法。原发性免疫缺陷病是单基因突变导致的以反复、难治性感染为标志性表现的一组疾病,病死率极高。而基因编辑的使用给该病带来了治愈的希望。该文综述了基因编辑技术的发展,并简要介绍基因编辑技术在原发性免疫缺陷病中的研究与应用。

Abstract

Gene editing is an advanced technique based on artificial nucleases and can precisely modify genome sequences. It has shown great application prospects in the field of medicine and has provided a new precision therapy for diseases. Primary immunodeficiency disease is a group of diseases caused by single gene mutation and characterized by recurrent and refractory infections, with an extremely high mortality rate. The application of gene editing has brought hope for curing these diseases. This article reviews the development of gene editing technology and briefly introduces the research and application of gene editing technology in primary immunodeficiency disease.

关键词

原发性免疫缺陷病 / 基因编辑 / CRISPR/Cas9 / 碱基编辑 / 先导编辑

Key words

Primary immunodeficiency disease / Gene editing / CRISPR/Cas9 / Base editing / Prime editing

引用本文

导出引用
刘珊, 方姝煜, 安云飞. 基因编辑治疗原发性免疫缺陷病[J]. 中国当代儿科杂志. 2021, 23(7): 743-748 https://doi.org/10.7499/j.issn.1008-8830.2103150
LIU Shan, FANG Shu-Yu, AN Yun-Fei. Gene editing for the treatment of primary immunodeficiency disease[J]. Chinese Journal of Contemporary Pediatrics. 2021, 23(7): 743-748 https://doi.org/10.7499/j.issn.1008-8830.2103150

参考文献

[1] Ho BX, Loh SJH, Chan WK, et al. In vivo genome editing as a therapeutic approach[J]. Int J Mol Sci, 2018, 19(9):2721. DOI:10.3390/ijms19092721. PMID:30213032. PMCID:PMC6163904.
[2] Rui Y, Wilson DR, Green JJ. Non-viral delivery to enable genome editing[J]. Trends Biotechnol, 2019, 37(3):281-293. DOI:10.1016/j.tibtech.2018.08.010. PMID:30278987. PMCID:PMC6378131.
[3] Saha SK, Saikot FK, Rahman MS, et al. Programmable molecular scissors:applications of a new tool for genome editing in biotech[J]. Mol Ther Nucleic Acids, 2019, 14:212-238. DOI:10.1016/j.omtn.2018.11.016. PMID:30641475. PMCID:PMC6330515.
[4] Chandrasegaran S, Carroll D. Origins of programmable nucleases for genome engineering[J]. J Mol Biol, 2016, 428(5 Pt B):963-989. DOI:10.1016/j.jmb.2015.10.014. PMID:26506267. PMCID:PMC4798875.
[5] Li T, Huang S, Jiang WZ, et al. TAL nucleases (TALNs):hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain[J]. Nucleic Acids Res, 2011, 39(1):359-372. DOI:10.1093/nar/gkq704. PMID:20699274. PMCID:PMC3017587.
[6] Lamb BM, Mercer AC, Barbas CF. Directed evolution of the TALE N-terminal domain for recognition of all 5' bases[J]. Nucleic Acids Res, 2013, 41(21):9779-9785. DOI:10.1093/nar/gkt754. PMID:23980031. PMCID:PMC3834825.
[7] Ding YD, Li H, Chen LL, et al. Recent advances in genome editing using CRISPR/Cas9[J]. Front Plant Sci, 2016, 7:703. DOI:10.3389/fpls.2016.00703. PMID:27252719. PMCID:PMC4877526.
[8] Jiang FG, Doudna JA. CRISPR-Cas9 structures and mechanisms[J]. Annu Rev Biophys, 2017, 46:505-529. DOI:10.1146/annurev-biophys-062215-010822. PMID:28375731.
[9] Gupta D, Bhattacharjee O, Mandal D, et al. CRISPR-Cas9 system:a new-fangled dawn in gene editing[J]. Life Sci, 2019, 232:116636. DOI:10.1016/j.lfs.2019.116636. PMID:31295471.
[10] 方凯伦, 杨辉. CRISPR/Cas工具的开发和应用[J]. 科学通报, 2020, 65(11):973-990. DOI:10.1360/TB-2019-0806.
[11] Fu YF, Sander JD, Reyon D, et al. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs[J]. Nat Biotechnol, 2014, 32(3):279-284. DOI:10.1038/nbt.2808. PMID:24463574. PMCID:PMC3988262.
[12] Yamada M, Watanabe Y, Gootenberg JS, et al. Crystal structure of the minimal Cas9 from campylobacter jejuni reveals the molecular diversity in the CRISPR-Cas9 systems[J]. Mol Cell, 2017, 65(6):1109-1121.e3. DOI:10.1016/j.molcel.2017.02.007. PMID:28306506.
[13] Truong DJ, Kühner K, Kühn R, et al. Development of an intein-mediated split-Cas9 system for gene therapy[J]. Nucleic Acids Res, 2015, 43(13):6450-6458. DOI:10.1093/nar/gkv601. PMID:26082496. PMCID:PMC4513872.
[14] Landrum MJ, Lee JM, Benson M, et al. ClinVar:public archive of interpretations of clinically relevant variants[J]. Nucleic Acids Res, 2016, 44(D1):D862-D868. DOI:10.1093/nar/gkv1222. PMID:26582918. PMCID:PMC4702865.
[15] Komor AC, Kim YB, Packer MS, et al. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage[J]. Nature, 2016, 533(7603):420-424. DOI:10.1038/nature17946. PMID:27096365. PMCID:PMC4873371.
[16] Gaudelli NM, Komor AC, Rees HA, et al. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage[J]. Nature, 2017, 551(7681):464-471. DOI:10.1038/nature24644. PMID:29160308. PMCID:PMC5726555.
[17] Richter MF, Zhao KT, Eton E, et al. Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity[J]. Nat Biotechnol, 2020, 38(7):883-891. DOI:10.1038/s41587-020-0453-z. PMID:32433547. PMCID:PMC7357821.
[18] Zuo EW, Sun YD, Wei W, et al. Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos[J]. Science, 2019, 364(6437):289-292. DOI:10.1126/science.aav9973. PMID:30819928. PMCID:PMC7301308.
[19] Zhao DD, Li J, Li SW, et al. Glycosylase base editors enable C-to-A and C-to-G base changes[J]. Nat Biotechnol, 2021, 39(1):35-40. DOI:10.1038/s41587-020-0592-2. PMID:32690970.
[20] Zhang XH, Zhu BY, Chen L, et al. Dual base editor catalyzes both cytosine and adenine base conversions in human cells[J]. Nat Biotechnol, 2020, 38(7):856-860. DOI:10.1038/s41587-020-0527-y. PMID:32483363.
[21] Anzalone AV, Randolph PB, Davis JR, et al. Search-and-replace genome editing without double-strand breaks or donor DNA[J]. Nature, 2019, 576(7785):149-157. DOI:10.1038/s41586-019-1711-4. PMID:31634902. PMCID:PMC6907074.
[22] 吴志胜, 傅高惠, 罗文骏, 等. 精准高效外源DNA整合技术研究进展[J]. 生物技术通报, 2020, 36(3):29-37. DOI:10.13560/j.cnki.biotech.bull.1985.2019-1207.
[23] Anzalone AV, Koblan LW, Liu DR. Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors[J]. Nat Biotechnol, 2020, 38(7):824-844. DOI:10.1038/s41587-020-0561-9. PMID:32572269.
[24] 邱璐瑶, 安云飞, 赵晓东. 《免疫出生错误:国际免疫学会联合会专家委员会2019年分类更新》解读[J]. 中国实用儿科杂志, 2020, 35(4):278-283. DOI:10.19538/j.ek2020040609.
[25] Booth C, Romano R, Roncarolo MG, et al. Gene therapy for primary immunodeficiency[J]. Hum Mol Genet, 2019, 28(R1):R15-R23. DOI:10.1093/hmg/ddz170. PMID:31297531.
[26] Bousso P, Wahn V, Douagi I, et al. Diversity, functionality, and stability of the T cell repertoire derived in vivo from a single human T cell precursor[J]. Proc Natl Acad Sci U S A, 2000, 97(1):274-278. DOI:10.1073/pnas.97.1.274. PMID:10618408. PMCID:PMC26653.
[27] Genovese P, Schiroli G, Escobar G, et al. Targeted genome editing in human repopulating haematopoietic stem cells[J]. Nature, 2014, 510(7504):235-240. DOI:10.1038/nature13420. PMID:24870228. PMCID:PMC4082311.
[28] Menon T, Firth AL, Scripture-Adams DD, et al. Lymphoid regeneration from gene-corrected SCID-X1 subject-derived iPSCs[J]. Cell Stem Cell, 2015, 16(4):367-372. DOI:10.1016/j.stem.2015.02.005. PMID:25772073. PMCID:PMC4545662.
[29] Schiroli G, Ferrari S, Conway A, et al. Preclinical modeling highlights the therapeutic potential of hematopoietic stem cell gene editing for correction of SCID-X1[J]. Sci Transl Med, 2017, 9(411):eaan0820. DOI:10.1126/scitranslmed.aan0820. PMID:29021165.
[30] Pavel-Dinu M, Wiebking V, Dejene BT, et al. Gene correction for SCID-X1 in long-term hematopoietic stem cells[J]. Nat Commun, 2019, 10(1):1634. DOI:10.1038/s41467-019-09614-y. PMID:30967552. PMCID:PMC6456568.
[31] De Ravin SS, Li LH, Wu XL, et al. CRISPR-Cas9 gene repair of hematopoietic stem cells from patients with X-linked chronic granulomatous disease[J]. Sci Transl Med, 2017, 9(372):eaah3480. DOI:10.1126/scitranslmed.aah3480. PMID:28077679.
[32] Anjani G, Vignesh P, Joshi V, et al. Recent advances in chronic granulomatous disease[J]. Genes Dis, 2020, 7(1):84-92. DOI:10.1016/j.gendis.2019.07.010. PMID:32181279. PMCID:PMC7063432.
[33] Zou JZ, Sweeney CL, Chou BK, et al. Oxidase-deficient neutrophils from X-linked chronic granulomatous disease iPS cells:functional correction by zinc finger nuclease-mediated safe harbor targeting[J]. Blood, 2011, 117(21):5561-5572. DOI:10.1182/blood-2010-12-328161. PMID:21411759. PMCID:PMC3110021.
[34] Merling RK, Kuhns DB, Sweeney CL, et al. Gene-edited pseudogene resurrection corrects p47phox-deficient chronic granulomatous disease[J]. Blood Adv, 2017, 1(4):270-278. DOI:10.1182/bloodadvances.2016001214. PMID:29296942. PMCID:PMC5727772.
[35] Wrona D, Pastukhov O, Pritchard RS, et al. CRISPR-directed therapeutic correction at the NCF1 locus is challenged by frequent incidence of chromosomal deletions[J]. Mol Ther Methods Clin Dev, 2020, 17:936-943. DOI:10.1016/j.omtm.2020.04.015. PMID:32420407. PMCID:PMC7217921.
[36] Khan SH. Genome-editing technologies:concept, pros, and cons of various genome-editing techniques and bioethical concerns for clinical application[J]. Mol Ther Nucleic Acids, 2019, 16:326-334. DOI:10.1016/j.omtn.2019.02.027. PMID:30965277. PMCID:PMC6454098.
[37] Hubbard N, Hagin D, Sommer K, et al. Targeted gene editing restores regulated CD40L function in X-linked hyper-IgM syndrome[J]. Blood, 2016, 127(21):2513-2522. DOI:10.1182/blood-2015-11-683235. PMID:26903548.
[38] Kuo CY, Long JD, Campo-Fernandez B, et al. Site-specific gene editing of human hematopoietic stem cells for X-linked Hyper-IgM syndrome[J]. Cell Rep, 2018, 23(9):2606-2616. DOI:10.1016/j.celrep.2018.04.103. PMID:29847792. PMCID:PMC6181643.
[39] Laskowski TJ, Van Caeneghem Y, Pourebrahim R, et al. Gene correction of iPSCs from a Wiskott-Aldrich syndrome patient normalizes the lymphoid developmental and functional defects[J]. Stem Cell Reports, 2016, 7(2):139-148. DOI:10.1016/j.stemcr.2016.06.003. PMID:27396937. PMCID:PMC4982969.
[40] Rai R, Romito M, Rivers E, et al. Targeted gene correction of human hematopoietic stem cells for the treatment of Wiskott-Aldrich syndrome[J]. Nat Commun, 2020, 11(1):4034. DOI:10.1038/s41467-020-17626-2. PMID:32788576. PMCID:PMC7423939.
[41] Charlesworth CT, Deshpande PS, Dever DP, et al. Identification of preexisting adaptive immunity to Cas9 proteins in humans[J]. Nat Med, 2019, 25(2):249-254. DOI:10.1038/s41591-018-0326-x. PMID:30692695. PMCID:PMC7199589.
[42] Lomova A, Clark DN, Campo-Fernandez B, et al. Improving gene editing outcomes in human hematopoietic stem and progenitor cells by temporal control of DNA repair[J]. Stem Cells, 2019, 37(2):284-294. DOI:10.1002/stem.2935. PMID:30372555. PMCID:PMC6368869.
[43] Canny MD, Moatti N, Wan LCK, et al. Inhibition of 53BP1 favors homology-dependent DNA repair and increases CRISPR-Cas9 genome-editing efficiency[J]. Nat Biotechnol, 2018, 36(1):95-102. DOI:10.1038/nbt.4021. PMID:29176614. PMCID:PMC5762392.

基金

重庆市科技局技术创新与应用示范(cstc2018jscx-msybX0005);儿童基因修饰和基因编辑创新平台。


PDF(1050 KB)
HTML

Accesses

Citation

Detail

段落导航
相关文章

/