Recent research on the influence of intrauterine growth restriction on the structure and function of the nervous system
ZHANG Yi-Jia
Author information+
Department of Pediatrics, Peking University Third Hospital, Beijing 100191, China
Show less
文章历史+
收稿日期
出版日期
2021-08-10
2021-11-09
发布日期
2021-11-09
摘要
宫内生长受限由多种因素导致,生后常表现为小于胎龄儿(small for gestational age,SGA)。SGA在围生期有较高的死亡及患病风险,其中神经系统在宫内即发生了结构改变,包括脑容积、灰质体积减小等,并伴有影像学及病理的异常改变;宫内生长受限胎儿在宫内进行血流再分布以保护脑部供血,目前对于脑保护机制的临床作用仍存在争议。SGA在新生儿及儿童期有较高的认知、运动、语言及行为功能发生异常的风险。早产儿神经功能损害程度比足月儿更严重。早期干预有利于神经系统功能的改善。 引用格式:
Abstract
Intrauterine growth restriction (IUGR) is caused by many factors, and most newborns with IUGR are small for gestational age (SGA). SGA infants have a relatively high risk of death and disease in the perinatal period, and the nervous system already has structural changes in the uterus, including the reduction of brain volume and gray matter volume, accompanied by abnormal imaging and pathological changes. IUGR fetuses undergo intrauterine blood flow redistribution to protect brain blood supply, and there are still controversies over the clinical effect of brain protection mechanism. SGA infants have a relatively high risk of abnormal cognitive, motor, language, and behavioral functions in the neonatal period and childhood, and preterm infants tend to have a higher degree of neurological impairment than full-term infants. Early intervention may help to improve the function of the nervous system. Citation:
ZHANG Yi-Jia.
Recent research on the influence of intrauterine growth restriction on the structure and function of the nervous system[J]. Chinese Journal of Contemporary Pediatrics. 2021, 23(11): 1184-1189 https://doi.org/10.7499/j.issn.1008-8830.2108044
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
1 American College of Obstetricians and Gynecologists' Committee on Practice Bulletins—Obstetrics and the Society for Maternal-Fetal Medicin. ACOG practice bulletin No. 204: fetal growth restriction[J]. Obstet Gynecol, 2019, 133(2): e97-e109. PMID: 30681542. DOI: 10.1097/AOG.0000000000003070. 2 Lee AC, Kozuki N, Cousens S, et al. Estimates of burden and consequences of infants born small for gestational age in low and middle income countries with INTERGROWTH-21st standard: analysis of CHERG datasets[J]. BMJ, 2017, 358: j3677. PMID: 28819030. PMCID: PMC5558898. DOI: 10.1136/bmj.j3677. 3 李婷, 朱丽敏, 张艳平, 等. 重度子痫前期极早产小于胎龄儿临床特点分析[J]. 中国当代儿科杂志, 2021, 23(3): 254-258. PMID: 33691918. PMCID: PMC7969190. DOI: 10.7499/j.issn.1008-8830.2011006. 4 吴琳琳, 林新祝, 郑直, 等. 绒毛膜血管病对新生儿的影响: 450例临床分析[J]. 中国当代儿科杂志, 2021, 23(5): 494-498. PMID: 34020740. PMCID: PMC8140339. DOI: 10.7499/j.issn.1008-8830.2102055. 5 Leite DFB, Cecatti JG. New approaches to fetal growth restriction: the time for metabolomics has come[J]. Rev Bras Ginecol Obstet, 2019, 41(7): 454-462. PMID: 31250420. DOI: 10.1055/s-0039-1692126. 6 Pels A, Beune IM, van Wassenaer-Leemhuis AG, et al. Early-onset fetal growth restriction: a systematic review on mortality and morbidity[J]. Acta Obstet Gynecol Scand, 2020, 99(2): 153-166. PMID: 31376293. PMCID: PMC7004054. DOI: 10.1111/aogs.13702. 7 Aviram A, Sherman C, Kingdom J, et al. Defining early vs late fetal growth restriction by placental pathology[J]. Acta Obstet Gynecol Scand, 2019, 98(3): 365-373. PMID: 30372519. DOI: 10.1111/aogs.13499. 8 Borrell A, Grande M, Pauta M, et al. Chromosomal microarray analysis in fetuses with growth restriction and normal karyotype: a systematic review and meta-analysis[J]. Fetal Diagn Ther, 2018, 44(1): 1-9. PMID: 28889126. DOI: 10.1159/000479506. 9 Burton GJ, Jauniaux E. Pathophysiology of placental-derived fetal growth restriction[J]. Am J Obstet Gynecol, 2018, 218(2s): S745-S761. PMID: 29422210. DOI: 10.1016/j.ajog.2017.11.577. 10 Zur RL, Kingdom JC, Parks WT, et al. The placental basis of fetal growth restriction[J]. Obstet Gynecol Clin North Am, 2020, 47(1): 81-98. PMID: 32008673. DOI: 10.1016/j.ogc.2019.10.008. 11 Nardozza LMM, Caetano ACR, Zamarian ACP, et al. Fetal growth restriction: current knowledge[J]. Arch Gynecol Obstet, 2017, 295(5): 1061-1077. PMID: 28285426. DOI: 10.1007/s00404-017-4341-9. 12 Ding YX, Cui H. The brain development of infants with intrauterine growth restriction: role of glucocorticoids[J]. Horm Mol Biol Clin Investig, 2019, 39(1): 20190016. PMID: 31348758. DOI: 10.1515/hmbci-2019-0016. 13 Gluck O, Schreiber L, Marciano A, et al. Pregnancy outcome and placental pathology in small for gestational age neonates in relation to the severity of their growth restriction[J]. J Matern Fetal Neonatal Med, 2019, 32(9): 1468-1473. PMID: 29157050. DOI: 10.1080/14767058.2017.1408070. 14 Businelli C, de Wit C, Visser GHA, et al. Ultrasound evaluation of cortical brain development in fetuses with intrauterine growth restriction[J]. J Matern Fetal Neonatal Med, 2015, 28(11): 1302-1307. PMID: 25109356. DOI: 10.3109/14767058.2014.953474. 15 Motte-Signoret E, Shankar-Aguilera S, Brailly-Tabard S, et al. Small for gestational age preterm neonates exhibit defective GH/IGF1 signaling pathway[J]. Front Pediatr, 2021, 9: 711400. PMID: 34447729. PMCID: PMC8382944. DOI: 10.3389/fped.2021.711400. 16 Gilchrist C, Cumberland A, Walker D, et al. Intrauterine growth restriction and development of the hippocampus: implications for learning and memory in children and adolescents[J]. Lancet Child Adolesc Health, 2018, 2(10): 755-764. PMID: 30236384. DOI: 10.1016/S2352-4642(18)30245-1. 17 王影, 李桂芳, 刘瑞可, 等. 适于胎龄儿和小于胎龄儿小脑发育的对比研究[J]. 中国当代儿科杂志, 2020, 22(9): 936-941. PMID: 32933622. PMCID: PMC7499441. DOI: 10.7499/j.issn.1008-8830.2003284. 18 Samuelsen GB, Pakkenberg B, Bogdanovi? N, et al. Severe cell reduction in the future brain cortex in human growth-restricted fetuses and infants[J]. Am J Obstet Gynecol, 2007, 197(1): 56.e1-e7. PMID: 17618757. DOI: 10.1016/j.ajog.2007.02.011. 19 王华伟, 吴冰, 刘敬, 等. 磁共振弥散张量成像定量评价生长受限胎儿脑白质发育的研究[J]. 中国当代儿科杂志, 2017, 19(8): 887-892. PMID: 28774363. PMCID: PMC7390043. DOI: 10.7499/j.issn.1008-8830.2017.08.008. 20 Hernandez-Andrade E, Serralde JAB, Cruz-Martinez R. Can anomalies of fetal brain circulation be useful in the management of growth restricted fetuses?[J]. Prenat Diagn, 2012, 32(2): 103-112. PMID: 22418951. DOI: 10.1002/pd.2913. 21 Rossi A, Romanello I, Forzano L, et al. Evaluation of fetal cerebral blood flow perfusion using power Doppler ultrasound angiography (3D-PDA) in growth-restricted fetuses[J]. Facts Views Vis Obgyn, 2011, 3(3): 175-180. PMID: 24753863. PMCID: PMC3991450. 22 Irmak K, Tüten N, Karaoglu G, et al. Evaluation of cord blood creatine kinase (CK), cardiac troponin T (cTnT), N-terminal-pro-B-type natriuretic peptide (NT-proBNP), and s100B levels in nonreassuring foetal heart rate[J]. J Matern Fetal Neonatal Med, 2021, 34(8): 1249-1254. PMID: 31195859. DOI: 10.1080/14767058.2019.1632285. 23 Strzalko B, Karowicz-Bilinska A, Wyka K, et al. Serum S100B protein concentrations in SGA/FGR newborns[J]. Ginekol Pol, 2021. PMID: 34105746. DOI: 10.5603/GP.a2021.0119. Epub ahead of print. 24 Costantine MM, Weiner SJ, Rouse DJ, et al. Umbilical cord blood biomarkers of neurologic injury and the risk of cerebral palsy or infant death[J]. Int J Dev Neurosci, 2011, 29(8): 917-922. PMID: 21736934. PMCID: PMC3210377. DOI: 10.1016/j.ijdevneu.2011.06.009. 25 Yue SL, Eke AC, Vaidya D, et al. Perinatal blood biomarkers for the identification of brain injury in very low birth weight growth-restricted infants[J]. J Perinatol, 2021. PMID: 34083761. DOI: 10.1038/s41372-021-01112-8. Epub ahead of print. 26 Ghaly A, Maki Y, Nygard K, et al. Maternal nutrient restriction in guinea pigs leads to fetal growth restriction with increased brain apoptosis[J]. Pediatr Res, 2019, 85(1): 105-112. PMID: 30420709. DOI: 10.1038/s41390-018-0230-6. 27 Gilchrist CP, Cumberland AL, Kondos-Devcic D, et al. Hippocampal neurogenesis and memory in adolescence following intrauterine growth restriction[J]. Hippocampus, 2021, 31(3): 321-334. PMID: 33320965. DOI: 10.1002/hipo.23291. 28 Tolcos M, McDougall A, Shields A, et al. Intrauterine growth restriction affects cerebellar granule cells in the developing guinea pig brain[J]. Dev Neurosci, 2018, 40(2): 162-174. PMID: 29763885. DOI: 10.1159/000487797. 29 Miller SL, Yawno T, Alers NO, et al. Antenatal antioxidant treatment with melatonin to decrease newborn neurodevelopmental deficits and brain injury caused by fetal growth restriction[J]. J Pineal Res, 2014, 56(3): 283-294. PMID: 24456220. DOI: 10.1111/jpi.12121. 30 Basilious A, Yager J, Fehlings MG. Neurological outcomes of animal models of uterine artery ligation and relevance to human intrauterine growth restriction: a systematic review[J]. Dev Med Child Neurol, 2015, 57(5): 420-430. PMID: 25330710. PMCID: PMC4406147. DOI: 10.1111/dmcn.12599. 31 Kirlangic MM, Sahin E, Madendag Y, et al. The role of the brain-sparing effect of growth-restricted fetuses in newborn germinal matrix/intraventricular hemorrhage[J]. J Perinat Med, 2021. PMID: 34284527. DOI: 10.1515/jpm-2021-0142. Epub ahead of print. 32 Malhotra A, Yahya Z, Sasi A, et al. Does fetal growth restriction lead to increased brain injury as detected by neonatal cranial ultrasound in premature infants?[J]. J Paediatr Child Health, 2015, 51(11): 1103-1108. PMID: 25939374. DOI: 10.1111/jpc.12910. 33 H?rkin P, Marttila R, Pokka T, et al. Survival analysis of a cohort of extremely preterm infants born in Finland during 2005-2013[J]. J Matern Fetal Neonatal Med, 2021, 34(15): 2506-2512. PMID: 31522587. DOI: 10.1080/14767058.2019.1668925. 34 Stampalija T, Thornton J, Marlow N, et al. Fetal cerebral Doppler changes and outcome in late preterm fetal growth restriction: prospective cohort study[J]. Ultrasound Obstet Gynecol, 2020, 56(2): 173-181. PMID: 32557921. DOI: 10.1002/uog.22125. 35 Cahill LS, Stortz G, Ravi Chandran A, et al. Determination of fetal heart rate short-term variation from umbilical artery Doppler waveforms[J]. Ultrasound Obstet Gynecol, 2021, 57(1): 70-74. PMID: 33030756. PMCID: PMC7779755. DOI: 10.1002/uog.23145. 36 Cahill LS, Stortz G, Ravi Chandran A, et al. Wave reflections in the umbilical artery measured by Doppler ultrasound as a novel predictor of placental pathology[J]. EBioMedicine, 2021, 67: 103326. PMID: 33965347. PMCID: PMC8176120. DOI: 10.1016/j.ebiom.2021.103326. 37 Blair EM, Nelson KB. Fetal growth restriction and risk of cerebral palsy in singletons born after at least 35 weeks' gestation[J]. Am J Obstet Gynecol, 2015, 212(4): 520.e1-520.e7. PMID: 25448521. DOI: 10.1016/j.ajog.2014.10.1103. 38 Vollgraff Heidweiller-Schreurs CA, De Boer MA, Heymans MW, et al. Prognostic accuracy of cerebroplacental ratio and middle cerebral artery Doppler for adverse perinatal outcome: systematic review and meta-analysis[J]. Ultrasound Obstet Gynecol, 2018, 51(3): 313-322. PMID: 28708272. PMCID: PMC5873403. DOI: 10.1002/uog.18809. 39 Bellido-González M, Díaz-López Má, López-Criado S, et al. Cognitive functioning and academic achievement in children aged 6-8 years, born at term after intrauterine growth restriction and fetal cerebral redistribution[J]. J Pediatr Psychol, 2017, 42(3): 345-354. PMID: 27342302. DOI: 10.1093/jpepsy/jsw060. 40 Miller SL, Huppi PS, Mallard C. The consequences of fetal growth restriction on brain structure and neurodevelopmental outcome[J]. J Physiol, 2016, 594(4): 807-823. PMID: 26607046. PMCID: PMC4753264. DOI: 10.1113/JP271402. 41 Benavente-Fernández I, Lubián-López SP, Zafra-Rodríguez P, et al. Amplitude-integrated EEG and brain sparing in preterm small-for-gestational-age infants[J]. J Clin Neurophysiol, 2017, 34(5): 456-460. PMID: 28873072. DOI: 10.1097/WNP.0000000000000399. 42 Sacchi C, Marino C, Nosarti C, et al. Association of intrauterine growth restriction and small for gestational age status with childhood cognitive outcomes: a systematic review and meta-analysis[J]. JAMA Pediatr, 2020, 174(8): 772-781. PMID: 32453414. PMCID: PMC7251506. DOI: 10.1001/jamapediatrics.2020.1097. 43 Murray E, Fernandes M, Fazel M, et al. Differential effect of intrauterine growth restriction on childhood neurodevelopment: a systematic review[J]. BJOG, 2015, 122(8): 1062-1072. PMID: 25990812. DOI: 10.1111/1471-0528.13435. 44 Ballot DE, Ramdin T, Rakotsoane D, et al. Assessment of developmental outcome in very low birth weight infants in Southern Africa using the Bayley Scales of Infant Development (III)[J]. BMJ Paediatr Open, 2017, 1(1): e000091. PMID: 29637126. PMCID: PMC5862217. DOI: 10.1136/bmjpo-2017-000091. 45 Hartkopf J, Schleger F, Keune J, et al. Impact of intrauterine growth restriction on cognitive and motor development at 2 years of age[J]. Front Physiol, 2018, 9: 1278. PMID: 30283344. PMCID: PMC6156264. DOI: 10.3389/fphys.2018.01278. 46 Morsing E, Malova M, Kahn A, et al. Brain volumes and developmental outcome in childhood following fetal growth restriction leading to very preterm birth[J]. Front Physiol, 2018, 9: 1583. PMID: 30505278. PMCID: PMC6250887. DOI: 10.3389/fphys.2018.01583. 47 尤玉慧, 吕国卿, 姜秀芳, 等. 出生胎龄与小于胎龄儿智能发育的相关性分析[J]. 中国妇幼保健, 2020, 35(4): 669-673. DOI: 10.19829/j.zgfybj.issn.1001-4411.2020.04.028. 48 何龙楷, 宋燕燕, 张腾伟, 等. 30~34周小于胎龄儿校正18~24月龄神经发育状况的前瞻性队列研究[J]. 中国儿童保健杂志, 2019, 27(4): 358-361. DOI: 10.11852/zgetbjzz2018-0502. 49 尤玉慧, 张焕丽, 吕雪蕊, 等. 小于胎龄儿神经发育预后危险因素的病例对照研究[J]. 中国优生与遗传杂志, 2019, 27(9): 1140-1142. DOI: 10.13404/j.cnki.cjbhh.2019.09.044. 50 郑拉洁, 苏卫东, 黄欢欢, 等. 早产小于胎龄儿早期干预对体格发育及神经心理发育影响的应用研究[J]. 中国康复医学杂志, 2021, 36(5): 559-563. DOI: 10.3969/j.issn.1001-1242.2021.05.009.