不对称二甲基精氨酸与新生儿持续性肺动脉高压病理进程的相关性研究

张雯婷, 陆琴, 丁洁珺, 顾猛

中国当代儿科杂志 ›› 2022, Vol. 24 ›› Issue (1) : 54-59.

PDF(587 KB)
HTML
PDF(587 KB)
HTML
中国当代儿科杂志 ›› 2022, Vol. 24 ›› Issue (1) : 54-59. DOI: 10.7499/j.issn.1008-8830.2108145
新生儿疾病专题

不对称二甲基精氨酸与新生儿持续性肺动脉高压病理进程的相关性研究

  • 张雯婷1,2, 陆琴3, 丁洁珺1, 顾猛1
作者信息 +

Association of asymmetric dimethylarginine with the pathological process of persistent pulmonary hypertension of the newborn

  • ZHANG Wen-Ting, LU Qin, DING Jie-Jun, GU Meng
Author information +
文章历史 +

摘要

目的 探讨不对称二甲基精氨酸(asymmetric dimethylarginine,ADMA)在新生儿持续性肺动脉高压(persistent pulmonary hypertension of the newborn,PPHN)足月儿循环系统中的变化规律及其与治疗响应的关系,探索其成为治疗靶标和治疗响应标志物的可能性。 方法 前瞻性选取出生3 d内、被诊断患有PPHN的足月新生儿30例为PPHN组,同时选取胎龄和日龄与PPHN患儿匹配的在新生儿科接受治疗或观察的非PPHN新生儿20例为对照,收集两组患儿治疗第1、7、14天的血清样本,用高效液相色谱串联质谱法检测血清中的L-精氨酸、ADMA及其同分异构体对称二甲基精氨酸(symmetric dimethylarginine,SDMA)的含量。 结果 对照组新生儿血清中ADMA和L-精氨酸的含量在前14 d内持续上升,而SDMA出现持续下降(P<0.05)。在第1天和第14天,对照组和PPHN组新生儿血清中的ADMA含量没有明显差别(P>0.05);在第7天,PPHN组患儿血清中ADMA含量显著高于对照组(P<0.05),而SDMA和L-精氨酸含量没有出现变化(P>0.05)。此外,PPHN患儿经过为期7 d的治疗,肺动脉收缩压仍高于35 mm Hg者的血清ADMA浓度显著高于肺动脉收缩压≤35 mm Hg者(P<0.05)。 结论 出生后前2周,足月儿循环系统中ADMA含量和ADMA/SDMA比值呈现持续增加的过程,PPHN病理进程加速这一过程,提示ADMA可能参与PPHN病理进程;高ADMA水平与PPHN治疗抵抗有关,提示抑制ADMA可能是提高PPHN治疗响应率的潜在药物干预靶标。

Abstract

Objective To study the change in asymmetric dimethylarginine (ADMA) in the circulation system of full-term infants with persistent pulmonary hypertension of the newborn (PPHN) and its association with treatment response, as well as the possibility of ADMA as a therapeutic target and a marker for treatment response. Methods A prospective study was performed. A total of 30 full-term neonates who were diagnosed with PPHN within 3 days after birth were enrolled as the PPHN group, and the neonates without PPHN, matched for gestational age and age, who were treated or observed in the department of neonatology were enrolled as the control group. Serum samples were collected on days 1, 7, and 14 of treatment. The high-performance liquid chromatography-tandem mass spectrometry was used to measure the serum concentrations of L-arginine, ADMA, and its isomer symmetric dimethylarginine (SDMA). Results For the neonates in the control group, the serum concentrations of ADMA and L-arginine continuously increased and the serum concentration of SDMA continuously decreased within the first 14 days of treatment. On days 1 and 14, there was no significant difference in the serum concentration of ADMA between the control and PPHN groups (P>0.05). On day 7, the PPHN group had a significantly higher serum concentration of ADMA than the control group (P<0.05), while there were no significant differences in serum concentrations of SDMA or L-arginine (P>0.05). Moreover, after 7 days of treatment, the PPHN neonates with a systolic pulmonary arterial pressure (sPAP) of >35 mmHg had a significantly higher serum concentration of ADMA than those with an sPAP of ≤35 mm Hg. Conclusions There are continuous increases in the ADMA concentration and the ADMA/SDMA ratio in the circulation system of full-term infants within the first 2 weeks after birth, and this process is accelerated by the pathological process of PPHN, suggesting that ADMA may be involved in the pathologic process of PPHN. A high level of ADMA is associated with the resistance to PPHN treatment, suggesting that inhibition of ADMA might be a potential target of drug intervention to improve the treatment response of PPHN.

关键词

持续性肺动脉高压 / 不对称二甲基精氨酸 / 血管内皮功能 / 新生儿

Key words

Persistent pulmonary hypertension / Asymmetric dimethylarginine / Vascular endothelial function / Neonate

引用本文

导出引用
张雯婷, 陆琴, 丁洁珺, 顾猛. 不对称二甲基精氨酸与新生儿持续性肺动脉高压病理进程的相关性研究[J]. 中国当代儿科杂志. 2022, 24(1): 54-59 https://doi.org/10.7499/j.issn.1008-8830.2108145
ZHANG Wen-Ting, LU Qin, DING Jie-Jun, GU Meng. Association of asymmetric dimethylarginine with the pathological process of persistent pulmonary hypertension of the newborn[J]. Chinese Journal of Contemporary Pediatrics. 2022, 24(1): 54-59 https://doi.org/10.7499/j.issn.1008-8830.2108145

参考文献

1 Mandell E, Kinsella JP, Abman SH. Persistent pulmonary hypertension of the newborn[J]. Pediatr Pulmonol, 2021, 56(3): 661-669. PMID: 32930508. DOI: 10.1002/ppul.25073.
2 Martinho S, Ad?o R, Leite-Moreira AF, et al. Persistent pulmonary hypertension of the newborn: pathophysiological mechanisms and novel therapeutic approaches[J]. Front Pediatr, 2020, 8: 342. PMID: 32850518. PMCID: PMC7396717. DOI: 10.3389/fped.2020.00342.
3 Singh Y, Lakshminrusimha S. Pathophysiology and management of persistent pulmonary hypertension of the newborn[J]. Clin Perinatol, 2021, 48(3): 595-618. PMID: 34353582. PMCID: PMC8351908. DOI: 10.1016/j.clp.2021.05.009.
4 Lázár Z, Mészáros M, Bikov A. The nitric oxide pathway in pulmonary arterial hypertension: pathomechanism, biomarkers and drug targets[J]. Curr Med Chem, 2020, 27(42): 7168-7188. PMID: 32442078. DOI: 10.2174/0929867327666200522215047.
5 Banjarnahor S, Rodionov RN, K?nig J, et al. Transport of L-arginine related cardiovascular risk markers[J]. J Clin Med, 2020, 9(12): 3975. PMID: 33302555. PMCID: PMC7764698. DOI: 10.3390/jcm9123975.
6 Ga? P, Por?ba M, Jurdziak M, et al. Cardiovascular risk factors and the concentration of asymmetric dimethylarginine[J]. Adv Clin Exp Med, 2020, 29(1): 63-70. PMID: 31967743. DOI: 10.17219/acem/111808.
7 Dowsett L, Higgins E, Alanazi S, et al. ADMA: a key player in the relationship between vascular dysfunction and inflammation in atherosclerosis[J]. J Clin Med, 2020, 9(9): 3026. PMID: 32962225. PMCID: PMC7563400. DOI: 10.3390/jcm9093026.
8 Tain YL, Hsu CN. Targeting on asymmetric dimethylarginine-related nitric oxide-reactive oxygen species imbalance to reprogram the development of hypertension[J]. Int J Mol Sci, 2016, 17(12): 2020. PMID: 27918455. PMCID: PMC5187820. DOI: 10.3390/ijms17122020.
9 中华医学会儿科学分会新生儿学组, 《中华儿科杂志》编辑委员会. 新生儿肺动脉高压诊治专家共识[J]. 中华儿科杂志, 2017, 55(3): 163-168. PMID: 28273698. DOI: 10.3760/cma.j.issn.0578-1310.2017.03.002.
10 Sharma M, Rana U, Joshi C, et al. Decreased cyclic guanosine monophosphate-protein kinase G signaling impairs angiogenesis in a lamb model of persistent pulmonary hypertension of the newborn[J]. Am J Respir Cell Mol Biol, 2021, 65(5): 555-567. PMID: 34185619. DOI: 10.1165/rcmb.2020-0434OC.
11 Ke XR, Johnson H, Jing XG, et al. Persistent pulmonary hypertension alters the epigenetic characteristics of endothelial nitric oxide synthase gene in pulmonary artery endothelial cells in a fetal lamb model[J]. Physiol Genomics, 2018, 50(10): 828-836. PMID: 30004838. PMCID: PMC6230868. DOI: 10.1152/physiolgenomics.00047.2018.
12 Pedersen J, Hedegaard ER, Simonsen U, et al. Current and future treatments for persistent pulmonary hypertension in the newborn[J]. Basic Clin Pharmacol Toxicol, 2018, 123(4): 392-406. PMID: 29855164. DOI: 10.1111/bcpt.13051.
13 Barrington KJ, Finer N, Pennaforte T, et al. Nitric oxide for respiratory failure in infants born at or near term[J]. Cochrane Database Syst Rev, 2017, 1(1): CD000399. PMID: 28056166. PMCID: PMC6464941. DOI: 10.1002/14651858.CD000399.pub3.
14 Sezgin D, Aslan G, Sahin K, et al. The effects of melatonin against atherosclerosis-induced endothelial dysfunction and inflammation in hypercholesterolemic rats[J]. Arch Physiol Biochem, 2020: 1-8. PMID: 33156709. DOI: 10.1080/13813455.2020.1838550. Epub ahead of print.
15 Arrigoni FI, Vallance P, Haworth SG, et al. Metabolism of asymmetric dimethylarginines is regulated in the lung developmentally and with pulmonary hypertension induced by hypobaric hypoxia[J]. Circulation, 2003, 107(8): 1195-1201. PMID: 12615801. DOI: 10.1161/01.cir.0000051466.00227.13.
16 Berlinguer F, Porcu C, Molle G, et al. Circulating concentrations of key regulators of nitric oxide production in undernourished sheep carrying single and multiple fetuses[J]. Animals (Basel), 2019, 10(1): 65. PMID: 31905930. PMCID: PMC7023428. DOI: 10.3390/ani10010065.
17 van der Vliet A, Janssen-Heininger YMW, Anathy V. Oxidative stress in chronic lung disease: from mitochondrial dysfunction to dysregulated redox signaling[J]. Mol Aspects Med, 2018, 63: 59-69. PMID: 30098327. PMCID: PMC6181583. DOI: 10.1016/j.mam.2018.08.001.
18 Culley MK, Chan SY. Mitochondrial metabolism in pulmonary hypertension: beyond mountains there are mountains[J]. J Clin Invest, 2018, 128(9): 3704-3715. PMID: 30080181. PMCID: PMC6118596. DOI: 10.1172/JCI120847.
19 Ornatowski W, Lu Q, Yegambaram M, et al. Complex interplay between autophagy and oxidative stress in the development of pulmonary disease[J]. Redox Biol, 2020, 36: 101679. PMID: 32818797. PMCID: PMC7451718. DOI: 10.1016/j.redox.2020.101679.
20 Zinellu A, Fois AG, Sotgia S, et al. Arginines plasma concentration and oxidative stress in mild to moderate COPD[J]. PLoS One, 2016, 11(8): e0160237. PMID: 27479314. PMCID: PMC4968788. DOI: 10.1371/journal.pone.0160237.
21 Tain YL, Hsu CN. Toxic dimethylarginines: asymmetric dimethylarginine (ADMA) and symmetric dimethylarginine (SDMA)[J]. Toxins (Basel), 2017, 9(3): 92. PMID: 28272322. PMCID: PMC5371847. DOI: 10.3390/toxins9030092.
22 Wang YY, Cheng XD, Jiang H. Effect of atorvastatin on pulmonary arterial hypertension in rats through PI3K/AKT signaling pathway[J]. Eur Rev Med Pharmacol Sci, 2019, 23(23): 10549-10556. PMID: 31841211. DOI: 10.26355/eurrev_201912_19696.
23 Makanga M, Maruyama H, Dewachter C, et al. Prevention of pulmonary hypoplasia and pulmonary vascular remodeling by antenatal simvastatin treatment in nitrofen-induced congenital diaphragmatic hernia[J]. Am J Physiol Lung Cell Mol Physiol, 2015, 308(7): L672-L682. PMID: 25617377. PMCID: PMC4385987. DOI: 10.1152/ajplung.00345.2014.

基金

常州市卫健委科技课题重大项目(ZD202032);常州市卫生健康青苗人才工程(CZQM2020105);常州市科技计划项目(CJ20160053)。

PDF(587 KB)
HTML

Accesses

Citation

Detail

段落导航
相关文章

/