肾上腺髓质素对高氧肺损伤的保护作用研究

张敏, 成利花, 殷晓桐, 罗好, 蔡成

中国当代儿科杂志 ›› 2021, Vol. 23 ›› Issue (12) : 1282-1288.

PDF(665 KB)
HTML
PDF(665 KB)
HTML
中国当代儿科杂志 ›› 2021, Vol. 23 ›› Issue (12) : 1282-1288. DOI: 10.7499/j.issn.1008-8830.2109005
论著·实验研究

肾上腺髓质素对高氧肺损伤的保护作用研究

  • 张敏, 成利花, 殷晓桐, 罗好, 蔡成
作者信息 +

Protective effect of adrenomedullin on hyperoxia-induced lung injury

  • ZHANG Min, CHENG Li-Hua, YIN Xiao-Tong, LUO Hao, CAI Cheng
Author information +
文章历史 +

摘要

目的 通过观察不同实验条件下肾上腺髓质素(adrenomedullin,ADM)对人肺微血管内皮细胞中降钙素受体样受体(calcitonin receptor-like receptor,CRLR)、受体活性修饰蛋白2(receptor activity-modifying proteins,RAMP2)、细胞外信号调节激酶(extracellular regulated kinase,ERK)与蛋白激酶B(protein kinase B,PKB)表达的影响,从而探讨ADM在高氧肺损伤过程中的作用。 方法 将人肺微血管内皮细胞随机分为空气组及高氧组(各组n=3),高氧组细胞置于3 L/min 92%O2+5%CO2高纯混合气中培养;应用实时荧光定量逆转录聚合酶链反应和Western blot法分别检测ADM、CRLR、RAMP2、ERK1/2和PKB的mRNA及其蛋白表达水平。另取细胞分为未干扰组和干扰组(n=3),向干扰组细胞转染ADM siRNA后,检测ADM、ERK1/2、PKB的mRNA及其蛋白表达水平。 结果 与空气组相比,高氧组ADM、CRLR、RAMP2、ERK1/2、PKB的mRNA及其蛋白表达量均显著增高(P<0.05)。与未干扰组相比,干扰组ADM、ERK1/2、PKB的mRNA及其蛋白表达量均显著降低(P<0.05)。 结论 ERK1/2、PKB可能为ADM信号通路下游靶点,ADM通过调控CRLR/RAMP2介导ERK/PKB信号通路,共同参与高氧肺损伤的保护过程。

Abstract

Objective To study the role of adrenomedullin (ADM) in hyperoxia-induced lung injury by examining the effect of ADM on the expression of calcitonin receptor-like receptor (CRLR), receptor activity-modifying protein 2 (RAMP2), extracellular signal-regulated kinase (ERK), and protein kinase B (PKB) in human pulmonary microvascular endothelial cells (HPMECs) under different experimental conditions. Methods HPMECs were randomly divided into an air group and a hyperoxia group (n=3 each).The HPMECs in the hyperoxia group were cultured in an atmosphere of 92% O2 (3 L/minute) +5% CO2. RT-qPCR and Western blot were used to measure the mRNA and protein expression levels of ADM, CRLR, RAMP2, ERK1/2, and PKB. Other HPMECs were divided into a non-interference group and an interference group (n=3 each), and the mRNA and protein expression levels of ADM, ERK1/2, and PKB were measured after the HPMECs in the interference group were transfected with ADM siRNA. Results Compared with the air group, the hyperoxia group had significant increases in the mRNA and protein expression levels of ADM, CRLR, RAMP2, ERK1/2, and PKB (P<0.05). Compared with the non-interference group, the interference group had significant reductions in the mRNA and protein expression levels of ADM, ERK1/2, and PKB (P<0.05). Conclusions ERK1/2 and PKB may be the downstream targets of the ADM signaling pathway. ADM mediates the ERK/PKB signaling pathway by regulating CRLR/RAMP2 and participates in the protection of hyperoxia-induced lung injury.

关键词

高氧肺损伤 / 肾上腺髓质素 / 细胞外信号调节激酶 / 蛋白激酶B / 人肺微血管内皮细胞

Key words

Hyperoxia-induced lung injury / Adrenomedullin / Extracellular signal-regulated kinase / Protein kinase B / Human pulmonary microvascular endothelial cell

引用本文

导出引用
张敏, 成利花, 殷晓桐, 罗好, 蔡成. 肾上腺髓质素对高氧肺损伤的保护作用研究[J]. 中国当代儿科杂志. 2021, 23(12): 1282-1288 https://doi.org/10.7499/j.issn.1008-8830.2109005
ZHANG Min, CHENG Li-Hua, YIN Xiao-Tong, LUO Hao, CAI Cheng. Protective effect of adrenomedullin on hyperoxia-induced lung injury[J]. Chinese Journal of Contemporary Pediatrics. 2021, 23(12): 1282-1288 https://doi.org/10.7499/j.issn.1008-8830.2109005

参考文献

1 Zhang LM, Bai XY, Yan WP. LncRNA-MALAT1, as a biomarker of neonatal BPD, exacerbates the pathogenesis of BPD by targeting miR-206[J]. Am J Transl Res, 2021, 13(2): 462-479. PMID: 33594304. PMCID: PMC7868848.
2 Kuwasako K, Kitamura K, Nagata S, et al. Characterization of the single transmembrane domain of human receptor activity-modifying protein 3 in adrenomedullin receptor internalization[J]. Biochem Biophys Res Commun, 2012, 420(3): 582-587. PMID: 22445753. DOI: 10.1016/j.bbrc.2012.03.037.
3 莫毅洁, 于美钢, 叶凤青. 体外循环下肾上腺髓质素2表达与心肌酶相关性的研究进展[J]. 现代医药卫生, 2017, 33(15): 2291-2294. DOI: 10.3969/j.issn.1009-5519.2017.15.016.
4 徐娇阳, 是文辉, 付勇, 等. HIF-1α、ET-1和 ADM 在低压低氧性肺动脉高压大鼠肺血管的表达及意义[J]. 中国实验诊断学, 2015, 19(12): 1996-2000.
5 Vadivel A, Abozaid S, van Haaften T, et al. Adrenomedullin promotes lung angiogenesis, alveolar development, and repair[J]. Am J Respir Cell Mol Biol, 2010, 43(2): 152-160. PMID: 19738161. DOI: 10.1165/rcmb.2009-0004OC.
6 Christ-Crain M, Müller B. Biomarkers in respiratory tract infections: diagnostic guides to antibiotic prescription, prognostic markers and mediators[J]. Eur Respir J, 2007, 30(3): 556-573. PMID: 17766633. DOI: 10.1183/09031936.00166106.
7 Chen ZJ, Yue SX, Zhou G, et al. ERK1 and ERK2 regulate chondrocyte terminal differentiation during endochondral bone formation[J]. J Bone Miner Res, 2015, 30(5): 765-774. PMID: 25401279. PMCID: PMC4487783. DOI: 10.1002/jbmr.2409.
8 Menon RT, Shrestha AK, Shivanna B. Hyperoxia exposure disrupts adrenomedullin signaling in newborn mice: implications for lung development in premature infants[J]. Biochem Biophys Res Commun, 2017, 487(3): 666-671. PMID: 28438602. PMCID: PMC5497733. DOI: 10.1016/j.bbrc.2017.04.112.
9 Kamikubo Y, Takaori-Kondo A, Uchiyama T, et al. Inhibition of cell growth by conditional expression of kpm, a human homologue of Drosophila warts/lats tumor suppressor[J]. J Biol Chem, 2003, 278(20): 17609-17614. PMID: 12624101. DOI: 10.1074/jbc.M211974200.
10 Xue GD, Zippelius A, Wicki A, et al. Integrated Akt/PKB signaling in immunomodulation and its potential role in cancer immunotherapy[J]. J Natl Cancer Inst, 2015, 107(7): djv171. PMID: 26071042. DOI: 10.1093/jnci/djv171.
11 Kim W, Moon SO, Sung MJ, et al. Angiogenic role of adrenomedullin through activation of Akt, mitogen-activated protein kinase, and focal adhesion kinase in endothelial cells[J]. FASEB J, 2003, 17(13): 1937-1939. PMID: 12897063. DOI: 10.1096/fj.02-1209fje.
12 Menon RT, Shrestha AK, Reynolds CL, et al. Adrenomedullin is necessary to resolve hyperoxia-induced experimental bronchopulmonary dysplasia and pulmonary hypertension in mice[J]. Am J Pathol, 2020, 190(3): 711-722. PMID: 32093901. PMCID: PMC7074343. DOI: 10.1016/j.ajpath.2019.11.011.
13 Zhang SJ, Patel A, Moorthy B, et al. Adrenomedullin deficiency potentiates hyperoxic injury in fetal human pulmonary microvascular endothelial cells[J]. Biochem Biophys Res Commun, 2015, 464(4): 1048-1053. PMID: 26196743. PMCID: PMC4558361. DOI: 10.1016/j.bbrc.2015.07.067.
14 MacManus CF, Campbell EL, Keely S, et al. Anti-inflammatory actions of adrenomedullin through fine tuning of HIF stabilization[J]. FASEB J, 2011, 25(6): 1856-1864. PMID: 21350119. PMCID: PMC3101032. DOI: 10.1096/fj.10-170316.
15 Zhang XY, Chu XY, Gong XH, et al. The expression of miR-125b in Nrf2-silenced A549 cells exposed to hyperoxia and its relationship with apoptosis[J]. J Cell Mol Med, 2020, 24(1): 965-972. PMID: 31713992. PMCID: PMC6933325. DOI: 10.1111/jcmm.14808.
16 Zhang M, Zhang XY, Chu XY, et al. Long non-coding RNA MALAT1 plays a protective role in bronchopulmonary dysplasia via the inhibition of apoptosis and interaction with the Keap1/Nrf2 signal pathway[J]. Transl Pediatr, 2021, 10(2): 265-275. PMID: 33708512. PMCID: PMC7944181. DOI: 10.21037/tp-20-200.
17 Weng BW, Zhang XY, Chu XY, et al. Nrf2?Keap1?ARE?NQO1 signaling attenuates hyperoxia?induced lung cell injury by inhibiting apoptosis[J]. Mol Med Rep, 2021, 23(3): 221. PMID: 33495821. DOI: 10.3892/mmr.2021.11860.
18 Wang JY, Dong WB. Oxidative stress and bronchopulmonary dysplasia[J]. Gene, 2018, 678: 177-183. PMID: 30098433. DOI: 10.1016/j.gene.2018.08.031.
19 Jobe AJ. The new BPD: an arrest of lung development[J]. Pediatr Res, 1999, 46(6): 641-643. PMID: 10590017. DOI: 10.1203/00006450-199912000-00007.
20 Cines DB, Pollak ES, Buck CA, et al. Endothelial cells in physiology and in the pathophysiology of vascular disorders[J]. Blood, 1998, 91(10): 3527-3561. PMID: 9572988.
21 Yoon S, Seger R. The extracellular signal-regulated kinase: multiple substrates regulate diverse cellular functions[J]. Growth Factors, 2006, 24(1): 21-44. PMID: 16393692. DOI: 10.1080/02699050500284218.
22 Semplicini A, Ceolotto G, Baritono E, et al. Adrenomedullin stimulates DNA synthesis of rat adrenal zona glomerulosa cells through activation of the mitogen-activated protein kinase-dependent cascade[J]. J Hypertens, 2001, 19(3 Pt 2): 599-602. PMID: 11327635. DOI: 10.1097/00004872-200103001-00012.
23 Fritz-Six KL, Dunworth WP, Li MY, et al. Adrenomedullin signaling is necessary for murine lymphatic vascular development[J]. J Clin Invest, 2008, 118(1): 40-50. PMID: 18097475. PMCID: PMC2147672. DOI: 10.1172/JCI33302.
24 Gao YQ, Li JY, Qiao N, et al. Adrenomedullin blockade suppresses sunitinib-resistant renal cell carcinoma growth by targeting the ERK/MAPK pathway[J]. Oncotarget, 2016, 7(39): 63374-63387. PMID: 27556517. PMCID: PMC5325371. DOI: 10.18632/oncotarget.11463.
25 Abraham E. Akt/protein kinase B[J]. Crit Care Med, 2005, 33(12 Suppl): S420-S422. PMID: 16340410. DOI: 10.1097/01.ccm.0000191715.31970.d8.
26 Nishimatsu H, Suzuki E, Nagata D, et al. Adrenomedullin induces endothelium-dependent vasorelaxation via the phosphatidylinositol 3-kinase/Akt-dependent pathway in rat aorta[J]. Circ Res, 2001, 89(1): 63-70. PMID: 11440979. DOI: 10.1161/hh1301.092498.
27 Reddy NM, Kleeberger SR, Kensler TW, et al. Disruption of Nrf2 impairs the resolution of hyperoxia-induced acute lung injury and inflammation in mice[J]. J Immunol, 2009, 182(11): 7264-7271. PMID: 19454723. PMCID: PMC2820248. DOI: 10.4049/jimmunol.0804248.
28 Dreger H, Westphal K, Weller A, et al. Nrf2-dependent upregulation of antioxidative enzymes: a novel pathway for proteasome inhibitor-mediated cardioprotection[J]. Cardiovasc Res, 2009, 83(2): 354-361. PMID: 19351736. DOI: 10.1093/cvr/cvp107.
29 Pugazhenthi S, Akhov L, Selvaraj G, et al. Regulation of heme oxygenase-1 expression by demethoxy curcuminoids through Nrf2 by a PI3-kinase/Akt-mediated pathway in mouse beta-cells[J]. Am J Physiol Endocrinol Metab, 2007, 293(3): E645-E655. PMID: 17535857. DOI: 10.1152/ajpendo.00111.2007.

基金

国家自然科学基金(81571467)。

PDF(665 KB)
HTML

Accesses

Citation

Detail

段落导航
相关文章

/