生后早期床旁心脏超声预测极低出生体重儿动脉导管持续开放的研究

刘太祥, 马晓路, 陈军津, 林慧佳, 王陈红, 陈鸣艳, 葛佳静, 施丽萍

中国当代儿科杂志 ›› 2022, Vol. 24 ›› Issue (1) : 26-32.

PDF(656 KB)
HTML
PDF(656 KB)
HTML
中国当代儿科杂志 ›› 2022, Vol. 24 ›› Issue (1) : 26-32. DOI: 10.7499/j.issn.1008-8830.2109087
新生儿疾病专题

生后早期床旁心脏超声预测极低出生体重儿动脉导管持续开放的研究

  • 刘太祥, 马晓路, 陈军津, 林慧佳, 王陈红, 陈鸣艳, 葛佳静, 施丽萍
作者信息 +

Value of bedside echocardiography in predicting persistent patency of the ductus arteriosus during the early postnatal period in very low birth weight infants

  • LIU Tai-Xiang, MA Xiao-Lu, CHEN Jun-Jin, LIN Hui-Jia, WANG Chen-Hong, CHEN Ming-Yan, GE Jia-Jing, SHI Li-Ping
Author information +
文章历史 +

摘要

目的 探讨出生早期床旁心脏超声预测极低出生体重儿(very low birth weight infant,VLBWI)动脉导管持续开放的价值。 方法 回顾性选取2020年3月至2021年6月收治的51例VLBWI为研究对象,入院时日龄≤3 d并且住院时间≥14 d。根据出生14 d及28 d动脉导管未闭(patent ductus arteriosus,PDA)直径大小分为3组:大PDA组(PDA直径≥2 mm)、小PDA组(PDA直径<2 mm)和PDA关闭组(PDA直径=0 mm),比较3组间生后72 h的心脏超声参数。采用受试者工作特征(receiver operating characteristic,ROC)曲线评估生后72 h心脏超声参数预测生后14 d和28 d动脉导管持续开放(PDA直径≥2 mm)的价值。 结果 生后14 d时,大PDA组有17例,小PDA组11例,PDA关闭组23例;生后28 d时,大PDA组有14例,小PDA组9例,PDA关闭组26例。3组患儿间胎龄、出生体重、肺泡表面活性物质应用及低血压发生率的比较差异有统计学意义(P<0.05)。生后72 h的PDA直径、左肺动脉舒张末期流速、左心室输出量、左心室输出量/上腔静脉血流与生后14 d及28 d时动脉导管持续开放有关(P<0.05);左心房/主动脉根部直径与生后28 d时动脉导管持续开放有关(P<0.05)。ROC曲线结果显示,生后72 h PDA直径预测生后14 d及28 d动脉导管持续开放的曲线下面积最大,分别为0.841和0.927;其次是左肺动脉舒张末期流速,其曲线下面积分别为0.793和0.833。 结论 生后72 h的床旁心脏超声指标,尤其是PDA直径及左肺动脉舒张末期流速,可预测VLBWI生后14 d和28 d动脉导管持续开放,为后续PDA早期目标性治疗策略的实施提供依据。

Abstract

Objective To study the value of bedside echocardiography in predicting persistent patency of the ductus arteriosus during the early postnatal period in very low birth weight (VLBW) infants. Methods A retrospective analysis was performed for 51 VLBW infants who were admitted from March 2020 to June 2021, with an age of ≤3 days and a length of hospital stay of ≥14 days. According to the diameter of patent ductus arteriosus (PDA) on days 14 and 28 after birth, the infants were divided into three groups: large PDA group (PDA diameter ≥2 mm), small PDA group (PDA diameter <2 mm), and PDA closure group (PDA diameter =0 mm). The echocardiographic parameters measured at 72 hours after birth were compared among the three groups. The receiver operating characteristic (ROC) curve was used to evaluate the value of the echocardiographic parameters in predicting persistent patency of the ductus arteriosus (PDA≥2 mm) at the ages of 14 and 28 days. Results On day 14 after birth, there were 17 infants in the large PDA group, 11 in the small PDA group, and 23 in the PDA closure group. On day 28 after birth, there were 14 infants in the large PDA group, 9 in the small PDA group, and 26 in the PDA closure group. There were significant differences in gestational age, birth weight, rate of pulmonary surfactant use, and incidence rate of hypotension among the three groups (P<0.05). PDA diameter, end-diastolic velocity of the left pulmonary artery, left ventricular output, and left ventricular output/superior vena cava flow ratio measured at 72 hours after birth were associated with persistent patency of the ductus arteriosus at the ages of 14 and 28 days (P<0.05), and the ratio of the left atrium to aorta diameter was associated with persistent patency of the ductus arteriosus at the age of 28 days (P<0.05). The ROC curve analysis showed that the area under the curve that the PDA diameter measured at 72 hours after birth predicting the persistent patency of the ductus arteriosus at the ages of 14 and 28 days was the largest (0.841 and 0.927 respectively), followed by end-diastolic velocity of the left pulmonary artery, with the area under the curve of 0.793 and 0.833 respectively. Conclusions The indicators obtained by beside echocardiography at 72 hours after birth, especially PDA diameter and end-diastolic velocity of the left pulmonary artery, can predict persistent patency of the ductus arteriosus at the ages of 14 and 28 days in VLBW infants, which provides a basis for the implementation of early targeted treatment strategy for PDA.

关键词

动脉导管未闭 / 床旁超声心动图 / 极低出生体重儿 / 早产儿

Key words

Patent ductus arteriosus / Bedside echocardiography / Very low birth weight infant / Preterm infant

引用本文

导出引用
刘太祥, 马晓路, 陈军津, 林慧佳, 王陈红, 陈鸣艳, 葛佳静, 施丽萍. 生后早期床旁心脏超声预测极低出生体重儿动脉导管持续开放的研究[J]. 中国当代儿科杂志. 2022, 24(1): 26-32 https://doi.org/10.7499/j.issn.1008-8830.2109087
LIU Tai-Xiang, MA Xiao-Lu, CHEN Jun-Jin, LIN Hui-Jia, WANG Chen-Hong, CHEN Ming-Yan, GE Jia-Jing, SHI Li-Ping. Value of bedside echocardiography in predicting persistent patency of the ductus arteriosus during the early postnatal period in very low birth weight infants[J]. Chinese Journal of Contemporary Pediatrics. 2022, 24(1): 26-32 https://doi.org/10.7499/j.issn.1008-8830.2109087

参考文献

1 Su BH, Lin HY, Huang FK, et al. Circulatory management focusing on preventing intraventricular hemorrhage and pulmonary hemorrhage in preterm infants[J]. Pediatr Neonatol, 2016, 57(6): 453-462. PMID: 26993561. DOI: 10.1016/j.pedneo.2016.01.001.
2 Bancalari E, Claure N, Gonzalez A. Patent ductus arteriosus and respiratory outcome in premature infants[J]. Biol Neonate, 2005, 88(3): 192-201. PMID: 16210841. DOI: 10.1159/000087582.
3 Ognean ML, Boant? O, Kovacs S, et al. Persistent ductus arteriosus in critically ill preterm infants[J]. J Crit Care Med (Targu Mures), 2016, 2(4): 175-184. PMID: 29967857. PMCID: PMC5953255. DOI: 10.1515/jccm-2016-0026.
4 Hagadorn JI, Brownell EA, Trzaski JM, et al. Trends and variation in management and outcomes of very low-birth-weight infants with patent ductus arteriosus[J]. Pediatr Res, 2016, 80(6): 785-792. PMID: 27509008. DOI: 10.1038/pr.2016.166.
5 Gillam-Krakauer M, Reese J. Diagnosis and management of patent ductus arteriosus[J]. Neoreviews, 2018, 19(7): e394-e402. PMID: 30505242. PMCID: PMC6269146. DOI: 10.1542/neo.19-7-e394.
6 Su BH, Lin HY, Chiu HY, et al. Therapeutic strategy of patent ductus arteriosus in extremely preterm infants[J]. Pediatr Neonatol, 2020, 61(2): 133-141. PMID: 31740267. DOI: 10.1016/j.pedneo.2019.10.002.
7 Hundscheid T, Onland W, van Overmeire B, et al. Early treatment versus expectative management of patent ductus arteriosus in preterm infants: a multicentre, randomised, non-inferiority trial in Europe (BeNeDuctus trial)[J]. BMC Pediatr, 2018, 18(1): 262. PMID: 30077184. PMCID: PMC6090763. DOI: 10.1186/s12887-018-1215-7.
8 EL-Khuffash A, Bussmann N, Breatnach CR, et al. A pilot randomized controlled trial of early targeted patent ductus arteriosus treatment using a risk based severity score (the PDA RCT)[J]. J Pediatr, 2021, 229: 127-133. PMID: 33069668. DOI: 10.1016/j.jpeds.2020.10.024.
9 Smith A, Maguire M, Livingstone V, et al. Peak systolic to end diastolic flow velocity ratio is associated with ductal patency in infants below 32 weeks of gestation[J]. Arch Dis Child Fetal Neonatal Ed, 2015, 100(2): F132-F136. PMID: 25406463. DOI: 10.1136/archdischild-2014-306439.
10 de Waal K, Phad N, Stubbs M, et al. A randomized placebo-controlled pilot trial of early targeted nonsteroidal anti-inflammatory drugs in preterm infants with a patent ductus arteriosus[J]. J Pediatr, 2021, 228: 82-86.e2. PMID: 32858033. DOI: 10.1016/j.jpeds.2020.08.062.
11 Terrin G, Di Chiara M, Boscarino G, et al. Echocardiography-guided management of preterms with patent ductus arteriosus influences the outcome: a cohort study[J]. Front Pediatr, 2020, 8: 582735. PMID: 33409261. PMCID: PMC7779760. DOI: 10.3389/fped.2020.582735.
12 Wu TW, Azhibekov T, Seri I. Transitional hemodynamics in preterm neonates: clinical relevance[J]. Pediatr Neonatol, 2016, 57(1): 7-18. PMID: 26482579. DOI: 10.1016/j.pedneo.2015.07.002.
13 Kluckow M. The pathophysiology of low systemic blood flow in the preterm infant[J]. Front Pediatr, 2018, 6: 29. PMID: 29503814. PMCID: PMC5820306. DOI: 10.3389/fped.2018.00029.
14 Hamrick SEG, Sallmon H, Rose AT, et al. Patent ductus arteriosus of the preterm infant[J]. Pediatrics, 2020, 146(5): e20201209. PMID: 33093140. PMCID: PMC7605084. DOI: 10.1542/peds.2020-1209.
15 Deshpande P, Baczynski M, McNamara PJ, et al. Patent ductus arteriosus: the physiology of transition[J]. Semin Fetal Neonatal Med, 2018, 23(4): 225-231. PMID: 29779927. DOI: 10.1016/j.siny.2018.05.001.
16 Koch J, Hensley G, Roy L, et al. Prevalence of spontaneous closure of the ductus arteriosus in neonates at a birth weight of 1000 grams or less[J]. Pediatrics, 2006, 117(4): 1113-1121. PMID: 16585305. DOI: 10.1542/peds.2005-1528.
17 Dice JE, Bhatia J. Patent ductus arteriosus: an overview[J]. J Pediatr Pharmacol Ther, 2007, 12(3): 138-146. PMID: 23055849. PMCID: PMC3462096. DOI: 10.5863/1551-6776-12.3.138.
18 Clyman RI, Couto J, Murphy GM. Patent ductus arteriosus: are current neonatal treatment options better or worse than no treatment at all?[J]. Semin Perinatol, 2012, 36(2): 123-129. PMID: 22414883. PMCID: PMC3305915. DOI: 10.1053/j.semperi.2011.09.022.
19 Tissot C, Singh Y. Neonatal functional echocardiography[J]. Curr Opin Pediatr, 2020, 32(2): 235-244. PMID: 32068595. DOI: 10.1097/MOP.0000000000000887.
20 van Laere D, van Overmeire B, Gupta S, et al. Application of NPE in the assessment of a patent ductus arteriosus[J]. Pediatr Res, 2018, 84(Suppl 1): 46-56. PMID: 30072803. PMCID: PMC6257219. DOI: 10.1038/s41390-018-0077-x.
21 Kwinta P, Rudziński A, Kruczek P, et al. Can early echocardiographic findings predict patent ductus arteriosus?[J]. Neonatology, 2009, 95(2): 141-148. PMID: 18776728. DOI: 10.1159/000153098.
22 Toyoshima K, Isayama T, Kobayashi T, et al. What echocardiographic indices are predictive of patent ductus arteriosus surgical closure in early preterm infants? A prospective multicenter cohort study[J]. J Cardiol, 2019, 74(6): 512-518. PMID: 31256929. DOI: 10.1016/j.jjcc.2019.05.004.
23 Hsu KH, Nguyen J, Dekom S, et al. Effects of patent ductus arteriosus on organ blood flow in infants born very preterm: a prospective study with serial echocardiography[J]. J Pediatr, 2020, 216: 95-100.e2. PMID: 31610928. DOI: 10.1016/j.jpeds.2019.08.057.
24 Masutani S, Isayama T, Kobayashi T, et al. Ductus diameter and left pulmonary artery end-diastolic velocity at 3 days of age predict the future need for surgical closure of patent ductus arteriosus in preterm infants: a post-hoc analysis of a prospective multicenter study[J]. J Cardiol, 2021, 78(6): 487-492. PMID: 34481720. DOI: 10.1016/j.jjcc.2021.08.007.
25 Suzumura H, Nitta A, Tanaka G, et al. Diastolic flow velocity of the left pulmonary artery of patent ductus arteriosus in preterm infants[J]. Pediatr Int, 2001, 43(2): 146-151. PMID: 11285066. DOI: 10.1046/j.1442-200x.2001.01365.x.
26 El Hajjar M, Vaksmann G, Rakza T, et al. Severity of the ductal shunt: a comparison of different markers[J]. Arch Dis Child Fetal Neonatal Ed, 2005, 90(5): F419-F422. PMID: 16113155. PMCID: PMC1721944. DOI: 10.1136/adc.2003.027698.

基金

浙江省医药卫生科技计划(2017ZD023)。

PDF(656 KB)
HTML

Accesses

Citation

Detail

段落导航
相关文章

/