急性期川崎病患儿血清外泌体蛋白质组学的前瞻性研究

张帆, 张欠文, 王娜娜, 刘倩, 沈洁, 侯淼, 孙凌, 吕海涛, 严文华, 黄洁

中国当代儿科杂志 ›› 2022, Vol. 24 ›› Issue (4) : 392-398.

PDF(1222 KB)
HTML
PDF(1222 KB)
HTML
中国当代儿科杂志 ›› 2022, Vol. 24 ›› Issue (4) : 392-398. DOI: 10.7499/j.issn.1008-8830.2110110
论著·临床研究

急性期川崎病患儿血清外泌体蛋白质组学的前瞻性研究

  • 张帆1, 张欠文2, 王娜娜1, 刘倩1, 沈洁1, 侯淼1, 孙凌1, 吕海涛1, 严文华1, 黄洁1
作者信息 +

Proteomics of serum exosomes in children in the acute stage of Kawasaki disease: a prospective study

  • ZHANG Fan, ZHANG Qian-Wen, WANG Na-Na, LIU Qian, SHEN Jie, HOU Miao, SUN Ling, LYU Hai-Tao, YAN Wen-Hua, HUANG Jie
Author information +
文章历史 +

摘要

目的 筛选急性期川崎病(Kawasaki disease,KD)患儿血清外泌体蛋白,分析其生物学过程及功能,以期为早期临床诊断KD提供新的生物标志物。 方法 前瞻性选取2019年6月至2020年8月于苏州大学附属儿童医院治疗的KD患儿(n=13)纳入KD组;同期选取因细菌感染入该院治疗的患儿(n=13)纳入感染对照组。采集两组患儿入院次日清晨空腹全血,离心后获得血清标本,超高速离心提取外泌体,采用非标记定量蛋白质组学技术对血清外泌体蛋白进行分析,筛选差异蛋白并进行功能富集分析,绘制蛋白质互作网络图像,通过靶向蛋白组学技术验证特有蛋白。 结果 两组共筛选出131种差异蛋白,其中27种蛋白为两组共有。48种蛋白为KD组特有,其中上调蛋白23种,下调蛋白25种。这些蛋白作用于补体和凝血级联、MAPK信号通路。靶向蛋白质组学技术验证显示,KD组中FGG、SERPING1、C1R、C1QA、IGHG4、C1QC蛋白可定量。29种蛋白仅在感染对照组中表达,其中上调蛋白12种,下调蛋白17种。感染对照组中通过靶向蛋白质组学技术验证可定量4种蛋白,分别为VWF、ECM1、F13A1、TTR。两组分别绘制蛋白质互作网络图像,KD组中FGG及C1QC与其他蛋白互作关系紧密;感染对照组中VWF与其他蛋白互作关系紧密。 结论 急性期KD患儿血清外泌体蛋白FGG及C1QC有望作为早期诊断KD的新的生物标志物。对于不明原因发热的患儿,检测蛋白FGG、C1QC及VWF可能有助于病因筛查。

Abstract

Objective To study the biological processes and functions of serum exosomes in children in the acute stage of Kawasaki disease (KD), so as to provide new biomarkers for the early diagnosis of KD. Methods In this prospective study, 13 children with KD who were treated in Children's Hospital of Soochow University from June 2019 to August 2020 were enrolled as the KD group, and 13 children who were hospitalized due to bacterial infection during the same period were enrolled as the control group. Whole blood was collected on the next morning after admission, serum samples were obtained by centrifugation, and exosomes were extracted through ultracentrifugation. Serum exosomes were analyzed by label-free quantitative proteomics, and differentially expressed proteins (DEPs) were screened out for functional enrichment analysis. A protein-protein interaction (PPI) network was plotted, and unique proteins were validated by targeted proteomics. Results A total of 131 DEPs were screened out for the two groups, among which 27 proteins were detected in both groups. There were 48 unique DEPs in the KD group, among which 23 were upregulated and 25 were downregulated, and these proteins acted on "complement and coagulation cascades" and "the MAPK signaling pathway". Validation by targeted proteomics showed that FGG, SERPING1, C1R, C1QA, IGHG4, and C1QC proteins were quantifiable in the KD group. A total of 29 proteins were only expressed in the control group, among which 12 were upregulated and 17 were downregulated. Four proteins were quantifiable based on targeted proteomics, i.e., VWF, ECM1, F13A1, and TTR. A PPI network was plotted for each group. In the KD group, FGG and C1QC had close interaction with other proteins, while in the control group, VWF had close interaction with other proteins. Conclusions The serum exosomes FGG and C1QC in children in the acute stage of KD are expected to become the biomarkers for the early diagnosis of KD. For children with unexplained fever, detection of FGG, C1QC1, and VWF may help with etiological screening.

关键词

川崎病 / 血清外泌体 / 蛋白质组学 / 生物标志物 / 儿童

Key words

Kawasaki disease / Serum exosome / Proteomics / Biomarker / Child

引用本文

导出引用
张帆, 张欠文, 王娜娜, 刘倩, 沈洁, 侯淼, 孙凌, 吕海涛, 严文华, 黄洁. 急性期川崎病患儿血清外泌体蛋白质组学的前瞻性研究[J]. 中国当代儿科杂志. 2022, 24(4): 392-398 https://doi.org/10.7499/j.issn.1008-8830.2110110
ZHANG Fan, ZHANG Qian-Wen, WANG Na-Na, LIU Qian, SHEN Jie, HOU Miao, SUN Ling, LYU Hai-Tao, YAN Wen-Hua, HUANG Jie. Proteomics of serum exosomes in children in the acute stage of Kawasaki disease: a prospective study[J]. Chinese Journal of Contemporary Pediatrics. 2022, 24(4): 392-398 https://doi.org/10.7499/j.issn.1008-8830.2110110

参考文献

1 McCrindle BW, Rowley AH, Newburger JW, et al. Diagnosis, treatment, and long-term management of Kawasaki disease: a scientific statement for health professionals from the American Heart Association[J]. Circulation, 2017, 135(17): e927-e999. PMID: 28356445. DOI: 10.1161/CIR.0000000000000484.
2 Tang Y, Yan W, Sun L, et al. Coronary artery aneurysm regression after Kawasaki disease and associated risk factors: a 3-year follow-up study in East China[J]. Clin Rheumatol, 2018, 37(7): 1945-1951. PMID: 29330741. DOI: 10.1007/s10067-018-3977-6.
3 Qiu H, He Y, Rong X, et al. Delayed intravenous immunoglobulin treatment increased the risk of coronary artery lesions in children with Kawasaki disease at different status[J]. Postgrad Med, 2018, 130(4): 442-447. PMID: 29745742. DOI: 10.1080/00325481.2018.1468712.
4 Tang Y, Li X, Cao L, et al. Characteristics and indications of Kawasaki disease among infants under 6 months[J]. Front Pediatr, 2020, 8: 470. PMID: 32923416. PMCID: PMC7456885. DOI: 10.3389/fped.2020.00470.
5 Pe?as-Martínez J, Barrachina MN, Cuenca-Zamora EJ, et al. Qualitative and quantitative comparison of plasma exosomes from neonates and adults[J]. Int J Mol Sci, 2021, 22(4): 1926. PMID: 33672065. PMCID: PMC7919666. DOI: 10.3390/ijms22041926.
6 Tsuno H, Arito M, Suematsu N, et al. A proteomic analysis of serum-derived exosomes in rheumatoid arthritis[J]. BMC Rheumatol, 2018, 2:35. PMID: 30886985. PMCID: PMC6390805. DOI: 10.1186/s41927-018-0041-8.
7 Hu S, Qiao L, Cheng K. Generation and manipulation of exosomes[J]. Methods Mol Biol, 2021, 2158:295-305. PMID: 32857382. PMCID: PMC7831703. DOI: 10.1007/978-1-0716-0668-1_22.
8 赵宗磊, 杜松, 沈淑馨, 等. 病毒性心肌炎患者血浆外泌体生物标志物蛋白质组学筛选[J]. 中华医学杂志, 2019, 99(5): 343-348. PMID: 30772974. DOI: 10.3760/cma.j.issn.0376-2491.2019.05.005.
9 Zhang L, Song QF, Jin JJ, et al. Differential protein analysis of serum exosomes post-intravenous immunoglobulin therapy in patients with Kawasaki disease[J]. Cardiol Young, 2017, 27(9): 1786-1796. PMID: 28803590. DOI: 10.1017/S1047951117001433.
10 Xie XF, Chu HJ, Xu YF, et al. Proteomics study of serum exosomes in Kawasaki disease patients with coronary artery aneurysms[J]. Cardiol J, 2019, 26(5): 584-593. PMID: 29611167. PMCID: PMC8084394. DOI: 10.5603/CJ.a2018.0032.
11 Hanjani NA, Esmaelizad N, Zanganeh S, et al. Emerging role of exosomes as biomarkers in cancer treatment and diagnosis[J]. Crit Rev Oncol Hematol, 2022, 169: 103565. PMID: 34871719. DOI: 10.1016/j.critrevonc.2021.103565.
12 de Vries JJ, Snoek CJM, Rijken DC, et al. Effects of post-translational modifications of fibrinogen on clot formation, clot structure, and fibrinolysis: a systematic review[J]. Arterioscler Thromb Vasc Biol, 2020, 40(3): 554-569. PMID: 31914791. PMCID: PMC7043730. DOI: 10.1161/ATVBAHA.119.313626.
13 Li D, Chen X, Li X, et al. Effectiveness and safety of dual antiplatelet therapy in coronary aneurysms caused by Kawasaki disease in children: study protocol for a multicenter randomized clinical trial[J]. Transl Pediatr, 2021, 10(7): 1914-1923. PMID: 34430440. PMCID: PMC8349963. DOI: 10.21037/tp-21-74.
14 Arora K, Guleria S, Jindal AK, et al. Platelets in Kawasaki disease: is this only a numbers game or something beyond?[J]. Genes Dis, 2020, 7(1): 62-66. PMID: 32181276. PMCID: PMC7063415. DOI: 10.1016/j.gendis.2019.09.003.
15 Jin J, Wang J, Lu Y, et al. Platelet-derived microparticles: a new index of monitoring platelet activation and inflammation in Kawasaki disease[J]. Indian J Pediatr, 2019, 86(3): 250-255. PMID: 30159809. DOI: 10.1007/s12098-018-2765-2.
16 van Schaarenburg RA, Suurmond J, Habets KL, et al. The production and secretion of complement component C1q by human mast cells[J]. Mol Immunol, 2016, 78: 164-170. PMID: 27648858. DOI: 10.1016/j.molimm.2016.09.001.
17 van de Bovenkamp FS, Dijkstra DJ, van Kooten C, et al. Circulating C1q levels in health and disease, more than just a biomarker[J]. Mol Immunol, 2021, 140: 206-216. PMID: 34735869. DOI: 10.1016/j.molimm.2021.10.010.
18 Hester CG, Frank MM. Complement activation by IgG containing immune complexes regulates the interaction of C1q with its ligands[J]. Mol Immunol, 2019, 116: 117-130. PMID: 31634815. DOI: 10.1016/j.molimm.2019.10.004.
19 McHeyzer-Williams M, Okitsu S, Wang N, et al. Molecular programming of B cell memory[J]. Nat Rev Immunol, 2011, 12(1): 24-34. PMID: 22158414. PMCID: PMC3947622. DOI: 10.1038/nri3128.
20 Al-Damry NT, Attia HA, Al-Rasheed NM, et al. Sitagliptin attenuates myocardial apoptosis via activating LKB-1/AMPK/Akt pathway and suppressing the activity of GSK-3β and p38α/MAPK in a rat model of diabetic cardiomyopathy[J]. Biomed Pharmacother, 2018, 107: 347-358. PMID: 30099338. DOI: 10.1016/j.biopha.2018.07.126.
21 夏丽滨, 石鑫, 沈艳, 等. SHC介导的胰岛素信号转导MAPK途径与先天性心脏病的关系[J]. 山东医药, 2019, 59(4): 14-18. DOI: 10.3969/j.issn.1002-266X.2019.04.004.
22 Liu Z, Gao Z, Zeng L, et al. Nobiletin ameliorates cardiac impairment and alleviates cardiac remodeling after acute myocardial infarction in rats via JNK regulation[J]. Pharmacol Res Perspect, 2021, 9(2): e00728. PMID: 33660406. PMCID: PMC7931132. DOI: 10.1002/prp2.728.

基金

国家自然科学基金(31670853);2021苏州市科技局项目(SKJY2021108)。

PDF(1222 KB)
HTML

Accesses

Citation

Detail

段落导航
相关文章

/