不同肠内营养开始时间对极低出生体重儿肠道菌群及代谢产物影响的前瞻性研究

申玉洁, 李禄全, 魏璐, 张先红, 赵文静, 刘晓晨, 吴利平

中国当代儿科杂志 ›› 2022, Vol. 24 ›› Issue (4) : 433-439.

PDF(948 KB)
HTML
PDF(948 KB)
HTML
中国当代儿科杂志 ›› 2022, Vol. 24 ›› Issue (4) : 433-439. DOI: 10.7499/j.issn.1008-8830.2111165
论著·临床研究

不同肠内营养开始时间对极低出生体重儿肠道菌群及代谢产物影响的前瞻性研究

  • 申玉洁, 李禄全, 魏璐, 张先红, 赵文静, 刘晓晨, 吴利平
作者信息 +

Influence of enteral feeding initiation time on intestinal flora and metabolites in very low birth weight infants: a prospective study

  • SHEN Yu-Jie, LI Lu-Quan, WEI Lu, ZHANG Xian-Hong, ZHAO Wen-Jing, LIU Xiao-Chen, WU Li-Ping
Author information +
文章历史 +

摘要

目的 探讨不同肠内营养开始时间对极低出生体重儿肠道菌群及代谢产物的影响。 方法 选取2020年6~12月重庆医科大学附属儿童医院新生儿科收治的29例极低出生体重儿为研究对象,根据生后肠内营养开始时间(开奶时间)不同分为<24 h组(n=15)和24~72 h组(n=14)。采集患儿住院第2周和第4周的粪便标本,采用16S rDNA高通量测序和气相色谱-质谱法分别分析粪便样本的菌群和短链脂肪酸(short-chain fatty acids,SCFAs)。 结果 菌群结果显示,生后第2周和第4周2组间Chao指数(反映菌群丰富度)和Shannon指数(反映菌群多样性)差异无统计学意义(P>0.05)。菌群组成分析中,生后第2周和第4周2组间主要菌群在门、属水平上差异无统计学意义(P>0.05)。2组SCFAs比较显示,开奶时间<24 h组第4周丙酸高于24~72 h组(P<0.05),而2组SCFAs总量及其他各SCFAs含量差异无统计学意义(P>0.05)。 结论 较早开始肠内营养对极低出生体重儿肠道菌群多样性和丰富度无影响,但24 h内开始肠内营养可以使代谢产物丙酸水平增高。

Abstract

Objective To study the influence of enteral feeding initiation time on intestinal flora and metabolites in very low birth weight (VLBW) infants. Methods A total of 29 VLBW infants who were admitted to the Department of Neonatology, Children's Hospital of Chongqing Medical University, from June to December, 2020, were enrolled as subjects. According to the enteral feeding initiation time after birth, the infants were divided into two groups: <24 hours (n=15) and 24-72 hours (n=14). Fecal samples were collected at weeks 2 and 4 of hospitalization, and 16S rDNA high-throughput sequencing and gas chromatography-mass spectrometry were used to analyze the microflora and short-chain fatty acids (SCFAs) respectively in fecal samples. Results The analysis of microflora showed that there was no significant difference between the two groups in Chao index (reflecting the abundance of microflora) and Shannon index (reflecting the diversity of microflora) at weeks 2 and 4 after birth (P>0.05). The analysis of flora composition showed that there was no significant difference in the main microflora at the phylum and genus levels between the two groups at weeks 2 and 4 after birth (P>0.05). The comparison of SCFAs between the two groups showed that the <24 hours group had a significantly higher level of propionic acid than the 24-72 hours group at week 4 (P<0.05), while there was no significant difference in the total amount of SCFAs and the content of the other SCFAs between the two groups (P>0.05). Conclusions Early enteral feeding has no influence on the diversity and abundance of intestinal flora in VLBW infants, but enteral feeding within 24 hours can increase the level of propionic acid, a metabolite of intestinal flora.

关键词

肠内营养 / 开始时间 / 肠道菌群 / 短链脂肪酸 / 极低出生体重儿

Key words

Enteral feeding / Initiation time / Intestinal flora / Short-chain fatty acid / Very low birth weight infant

引用本文

导出引用
申玉洁, 李禄全, 魏璐, 张先红, 赵文静, 刘晓晨, 吴利平. 不同肠内营养开始时间对极低出生体重儿肠道菌群及代谢产物影响的前瞻性研究[J]. 中国当代儿科杂志. 2022, 24(4): 433-439 https://doi.org/10.7499/j.issn.1008-8830.2111165
SHEN Yu-Jie, LI Lu-Quan, WEI Lu, ZHANG Xian-Hong, ZHAO Wen-Jing, LIU Xiao-Chen, WU Li-Ping. Influence of enteral feeding initiation time on intestinal flora and metabolites in very low birth weight infants: a prospective study[J]. Chinese Journal of Contemporary Pediatrics. 2022, 24(4): 433-439 https://doi.org/10.7499/j.issn.1008-8830.2111165

参考文献

1 Chen YW, Zhou JH, Wang L. Role and mechanism of gut microbiota in human disease[J]. Front Cell Infect Microbiol, 2021, 11: 625913. PMID: 33816335. PMCID: PMC8010197. DOI: 10.3389/fcimb.2021.625913.
2 Salas AA, Willis KA, Carlo WA, et al. The gut microbiome of extremely preterm infants randomized to the early progression of enteral feeding[J]. Pediatr Res, 2021. PMID: 34775476. DOI: 10.1038/s41390-021-01831-w. Epub ahead of print.
3 魏涛, 彭思意, 李旭英, 等. 新生儿PICC相关感染影响因素的Meta分析[J]. 中国护理管理, 2019, 19(3): 380-387. DOI: 10.3969/j.issn.1672-1756.2019.03.012.
4 丁国芳. 极低出生体重儿尽早达到足量肠内营养喂养策略——《极低出生体重儿喂养指南》解读[J]. 中国实用儿科杂志, 2016, 31(2): 85-89. DOI: 10.7504/ek2016020602.
5 Tewari VV, Dubey SK, Kumar R, et al. Early versus late enteral feeding in preterm intrauterine growth restricted neonates with antenatal doppler abnormalities: an open-label randomized trial[J]. J Trop Pediatr, 2018, 64(1): 4-14. PMID: 28369652. DOI: 10.1093/tropej/fmx018.
6 Nakubulwa C, Musiime V, Namiiro FB, et al. Delayed initiation of enteral feeds is associated with postnatal growth failure among preterm infants managed at a rural hospital in Uganda[J]. BMC Pediatr, 2020, 20(1): 86. PMID: 32093661. PMCID: PMC7038603. DOI: 10.1186/s12887-020-1986-5.
7 中国医师协会新生儿科医师分会循证专业委员会. 早产儿喂养不耐受临床诊疗指南(2020)[J]. 中国当代儿科杂志, 2020, 22(10): 1047-1055. PMID: 33059799. PMCID: PMC7568993. DOI: 10.7499/j.issn.1008-8830.2008132.
8 王丹华. 早产儿肠内营养新概念[J]. 临床儿科杂志, 2007, 25(3): 174-178. DOI: 10.3969/j.issn.1000-3606.2007.03.004.
9 Ahmed F, Dey SK, Shahidullah M, et al. Early versus delayed enteral feeding for achieving full feeding in preterm growth-restricted infants: a randomized clinical trial[J]. Mymensingh Med J, 2020, 29(3): 638-645. PMID: 32844806.
10 于新颖, 范玲. 肠内营养开始时间对极低出生体重儿消化功能及生长速度的影响[J]. 中国当代儿科杂志, 2014, 16(8): 814-819. PMID: 25140774. DOI: 10.7499/j.issn.1008-8830.2014.08.009.
11 Gil A, Rueda R, Ozanne SE, et al. Is there evidence for bacterial transfer via the placenta and any role in the colonization of the infant gut?—a systematic review[J]. Crit Rev Microbiol, 2020, 46(5): 493-507. PMID: 32776793. DOI: 10.1080/1040841X.2020.1800587.
12 Mitchell CM, Mazzoni C, Hogstrom L, et al. Delivery mode affects stability of early infant gut microbiota[J]. Cell Rep Med, 2020, 1(9): 100156. PMID: 33377127. PMCID: PMC7762768. DOI: 10.1016/j.xcrm.2020.100156.
13 孙倩, 王政力, 刘晓晨, 等. 广谱抗生素疗程对极低出生体重儿粪便肠道菌群和短链脂肪酸影响的前瞻性研究[J]. 中国当代儿科杂志, 2021, 23(10): 1008-1014. PMID: 34719415. PMCID: PMC8549637. DOI: 10.7499/j.issn.1008-8830.2107103.
14 Liu PY, Wang YB, Yang G, et al. The role of short-chain fatty acids in intestinal barrier function, inflammation, oxidative stress, and colonic carcinogenesis[J]. Pharmacol Res, 2021, 165: 105420. PMID: 33434620. DOI: 10.1016/j.phrs.2021.105420.
15 Tang RQ, Li LJ. Modulation of short-chain fatty acids as potential therapy method for type 2 diabetes mellitus[J]. Can J Infect Dis Med Microbiol, 2021, 2021: 6632266. PMID: 33488888. PMCID: PMC7801078. DOI: 10.1155/2021/6632266.
16 Liu JM, Jin YJ, Ye YL, et al. The neuroprotective effect of short chain fatty acids against sepsis-associated encephalopathy in mice[J]. Front Immunol, 2021, 12: 626894. PMID: 33584734. PMCID: PMC7876449. DOI: 10.3389/fimmu.2021.626894.
17 Tong LC, Wang Y, Wang ZB, et al. Propionate ameliorates dextran sodium sulfate-induced colitis by improving intestinal barrier function and reducing inflammation and oxidative stress[J]. Front Pharmacol, 2016, 7: 253. PMID: 27574508. PMCID: PMC4983549. DOI: 10.3389/fphar.2016.00253.
18 Li JJ, Zhang L, Wu T, et al. Indole-3-propionic acid improved the intestinal barrier by enhancing epithelial barrier and mucus barrier[J]. J Agric Food Chem, 2021, 69(5): 1487-1495. PMID: 33356219. DOI: 10.1021/acs.jafc.0c05205.
19 Pace F, Rudolph SE, Chen Y, et al. The short-chain fatty acids propionate and butyrate augment adherent-invasive Escherichia coli virulence but repress inflammation in a human intestinal enteroid model of infection[J]. Microbiol Spectr, 2021, 9(2): e0136921. PMID: 34612688. PMCID: PMC8510176. DOI: 10.1128/Spectrum.01369-21.
20 Kim CH. Control of lymphocyte functions by gut microbiota-derived short-chain fatty acids[J]. Cell Mol Immunol, 2021, 18(5): 1161-1171. PMID: 33850311. PMCID: PMC8093302. DOI: 10.1038/s41423-020-00625-0.
21 Dupraz L, Magniez A, Rolhion N, et al. Gut microbiota-derived short-chain fatty acids regulate IL-17 production by mouse and human intestinal γδ T cells[J]. Cell Rep, 2021, 36(1): 109332. PMID: 34233192. DOI: 10.1016/j.celrep.2021.109332.
22 Chen D, Gao ZQ, Wang YY, et al. Sodium propionate enhances Nrf2-mediated protective defense against oxidative stress and inflammation in lipopolysaccharide-induced neonatal mice[J]. J Inflamm Res, 2021, 14: 803-816. PMID: 33732006. PMCID: PMC7957230. DOI: 10.2147/JIR.S303105.

PDF(948 KB)
HTML

Accesses

Citation

Detail

段落导航
相关文章

/