5岁男童进行性智力运动功能倒退2.5年

田茂强, 陈晓曦, 李磊, 郎长会, 李娟, 陈静, 余小华, 束晓梅

中国当代儿科杂志 ›› 2022, Vol. 24 ›› Issue (6) : 699-704.

PDF(1973 KB)
HTML
PDF(1973 KB)
HTML
中国当代儿科杂志 ›› 2022, Vol. 24 ›› Issue (6) : 699-704. DOI: 10.7499/j.issn.1008-8830.2201048
论著·病例分析

5岁男童进行性智力运动功能倒退2.5年

  • 田茂强1, 陈晓曦2, 李磊1, 郎长会1, 李娟1, 陈静1, 余小华1, 束晓梅1
作者信息 +

Progressive psychomotor regression for 2.5 years in a boy aged 5 years

  • TIAN Mao-Qiang, CHEN Xiao-Xi, LI Lei, LANG Chang-Hui, LI Juan, CHEN Jing, YU Xiao-Hua, SHU Xiao-Mei
Author information +
文章历史 +

摘要

患儿男,5岁,因进行性智力运动功能倒退2.5年就诊。早期以运动功能倒退为主要表现。早期头颅MRI及家系全外显子测序分析无异常。4岁9月龄后出现认知功能倒退,头颅MRI提示小脑萎缩。重分析基因测序结果发现患儿存在HEXA基因复合杂合突变[NM_000520,c.784C>T(p.His262Tyr),c.1412C>T(p.Pro471Leu)],酶学活力检测结果提示患儿该基因编码β-氨基己糖苷酶水平显著下降。该患儿被确诊为青少年型Tay-Sachs病(Tay-Sachs disease,TSD)。TSD临床异质性强,小脑萎缩可能是青少年型TSD患儿诊断的重要线索。同时,根据病情演变适时进行二次基因数据分析可能提高全外显子测序的阳性率。引

Abstract

A boy, aged 5 years, attended the hospital due to progressive psychomotor regression for 2.5 years. Motor function regression was the main manifestation in the early stage, and brain MRI and whole-exome sequencing (WES) of the family showed no abnormalities. After the age of 4 years and 9 months, the boy developed cognitive function regression, and brain MRI showed cerebellar atrophy. The reanalysis of WES results revealed a compound heterozygous mutation, [NM_000520, c.784C>T(p.His262Tyr]), c.1412C>T(p.Pro471Leu)], in the HEXA gene. The enzyme activity detection showed a significant reduction in the level of β-hexosaminidase encoded by this gene. The boy was diagnosed with juvenile Tay-Sachs disease (TSD). TSD has strong clinical heterogeneity, and cerebellar atrophy may be an important clue for the diagnosis of juvenile TSD. The reanalysis of genetic data when appropriate based on disease evolution may improve the positive rate of WES.

关键词

神经节苷脂沉积症 / Tay-Sachs病 / HEXA基因 / 小脑萎缩 / 儿童

Key words

Gangliosidosis / Tay-Sachs disease / HEXA gene / Cerebellar atrophy / Child

引用本文

导出引用
田茂强, 陈晓曦, 李磊, 郎长会, 李娟, 陈静, 余小华, 束晓梅. 5岁男童进行性智力运动功能倒退2.5年[J]. 中国当代儿科杂志. 2022, 24(6): 699-704 https://doi.org/10.7499/j.issn.1008-8830.2201048
TIAN Mao-Qiang, CHEN Xiao-Xi, LI Lei, LANG Chang-Hui, LI Juan, CHEN Jing, YU Xiao-Hua, SHU Xiao-Mei. Progressive psychomotor regression for 2.5 years in a boy aged 5 years[J]. Chinese Journal of Contemporary Pediatrics. 2022, 24(6): 699-704 https://doi.org/10.7499/j.issn.1008-8830.2201048

参考文献

1 李清峰, 郁莉斐. 被误诊为重症肌无力3例病例分析[J]. 中华实用儿科临床杂志, 2021, 36(3): 222-224. DOI: 10.3760/cma.j.cn101070-20191106-01098.
2 杨昌键, 雷文婷, 余小华, 等. 表型不同的酪氨酸羟化酶缺乏症2例[J]. 中华实用儿科临床杂志, 2020, 35(19): 1509-1511. DOI: 10.3760/cma.j.cn101070-20190705-00602.
3 Mascalchi M, Mari F, Berti B, et al. Fast progression of cerebellar atrophy in PLA2G6-associated infantile neuronal axonal dystrophy[J]. Cerebellum, 2017, 16(3): 742-745. PMID: 28091863. DOI: 10.1007/s12311-017-0843-z.
4 Langer Y, Aran A, Gulsuner S, et al. Mitochondrial PITRM1 peptidase loss-of-function in childhood cerebellar atrophy[J]. J Med Genet, 2018, 55(9): 599-606. PMID: 29764912. DOI: 10.1136/jmedgenet-2018-105330.
5 Regier DS, Kwon HJ, Johnston J, et al. MRI/MRS as a surrogate marker for clinical progression in GM1 gangliosidosis[J]. Am J Med Genet A, 2016, 170(3): 634-644. PMID: 26646981. DOI: 10.1002/ajmg.a.37468.
6 Hoffmann GF, Charpentier C, Mayatepek E, et al. Clinical and biochemical phenotype in 11 patients with mevalonic aciduria[J]. Pediatrics, 1993, 91(5): 915-921. PMID: 8386351.
7 Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology[J]. Genet Med, 2015, 17(5): 405-424. PMID: 25741868. PMCID: PMC4544753. DOI: 10.1038/gim.2015.30.
8 杨志刚, 王媛, 陈国洪. Tay-Sachs病1例临床及HEXA基因突变分析[J]. 临床儿科杂志, 2019, 37(9): 697-699. DOI: 10.3969/j.issn.1000-3606.2019.09.015.
9 Shaimardanova AA, Chulpanova DS, Solovyeva VV, et al. Functionality of a bicistronic construction containing HEXA and HEXB genes encoding β-hexosaminidase A for cell-mediated therapy of GM2 gangliosidoses[J]. Neural Regen Res, 2022, 17(1): 122-129. PMID: 34100447. PMCID: PMC8451576. DOI: 10.4103/1673-5374.314310.
10 Leal AF, Benincore-Flórez E, Solano-Galarza D, et al. GM2 gangliosidoses: clinical features, pathophysiological aspects, and current therapies[J]. Int J Mol Sci, 2020, 21(17): 6213. PMID: 32867370. PMCID: PMC7503724. DOI: 10.3390/ijms21176213.
11 Jahnová H, Poupětová H, Jire?ková J, et al. Amyotrophy, cerebellar impairment and psychiatric disease are the main symptoms in a cohort of 14 Czech patients with the late-onset form of Tay-Sachs disease[J]. J Neurol, 2019, 266(8): 1953-1959. PMID: 31076878. DOI: 10.1007/s00415-019-09364-3.
12 Májovská J, Hennig A, Nestrasil I, et al. Pontocerebellar atrophy is the hallmark neuroradiological finding in late-onset Tay-Sachs disease[J]. Neurol Sci, 2022, 43(5): 3273-3281. PMID: 34800199. DOI: 10.1007/s10072-021-05757-3.
13 Reetz K, Rodríguez-Labrada R, Dogan I, et al. Brain atrophy measures in preclinical and manifest spinocerebellar ataxia type 2[J]. Ann Clin Transl Neurol, 2018, 5(2): 128-137. PMID: 29468174. PMCID: PMC5817824. DOI: 10.1002/acn3.504.
14 Rochtus A, Olson HE, Smith L, et al. Genetic diagnoses in epilepsy: the impact of dynamic exome analysis in a pediatric cohort[J]. Epilepsia, 2020, 61(2): 249-258. PMID: 31957018. PMCID: PMC7404709. DOI: 10.1111/epi.16427.
15 Li J, Gao K, Yan H, et al. Reanalysis of whole exome sequencing data in patients with epilepsy and intellectual disability/mental retardation[J]. Gene, 2019, 700: 168-175. PMID: 30904718. DOI: 10.1016/j.gene.2019.03.037.
16 Marshall J, Nietupski JB, Park H, et al. Substrate reduction therapy for Sandhoff disease through inhibition of glucosylceramide synthase activity[J]. Mol Ther, 2019, 27(8): 1495-1506. PMID: 31208914. PMCID: PMC6697407. DOI: 10.1016/j.ymthe.2019.05.018.
17 Wada R, Tifft CJ, Proia RL. Microglial activation precedes acute neurodegeneration in Sandhoff disease and is suppressed by bone marrow transplantation[J]. Proc Natl Acad Sci U S A, 2000, 97(20): 10954-10959. PMID: 11005868. PMCID: PMC27130. DOI: 10.1073/pnas.97.20.10954.
18 Stepien KM, Lum SH, Wraith JE, et al. Haematopoietic stem cell transplantation arrests the progression of neurodegenerative disease in late-onset Tay-Sachs disease[J]. JIMD Rep, 2018, 41: 17-23. PMID: 29214523. PMCID: PMC6122053. DOI: 10.1007/8904_2017_76.
19 Matsuoka K, Tamura T, Tsuji D, et al. Therapeutic potential of intracerebroventricular replacement of modified human β-hexosaminidase B for GM2 gangliosidosis[J]. Mol Ther, 2011, 19(6): 1017-1024. PMID: 21487393. PMCID: PMC3129794. DOI: 10.1038/mt.2011.27.
20 Golebiowski D, van der Bom IMJ, Kwon CS, et al. Direct intracranial injection of AAVrh8 encoding monkey β-N-acetylhexosaminidase causes neurotoxicity in the primate brain[J]. Hum Gene Ther, 2017, 28(6): 510-522. PMID: 28132521. PMCID: PMC5488349. DOI: 10.1089/hum.2016.109.
21 Gray-Edwards HL, Randle AN, Maitland SA, et al. Adeno-associated virus gene therapy in a sheep model of Tay-Sachs disease[J]. Hum Gene Ther, 2018, 29(3): 312-326. PMID: 28922945. DOI: 10.1089/hum.2017.163.
22 Shaimardanova AA, Chulpanova DS, Solovyeva VV, et al. Serum cytokine profile, beta-hexosaminidase A enzymatic activity and GM2 ganglioside levels in the plasma of a Tay-Sachs disease patient after cord blood cell transplantation and curcumin administration: a case report[J]. Life (Basel), 2021, 11(10): 1007. PMID: 34685379. PMCID: PMC8539434. DOI: 10.3390/life11101007.

PDF(1973 KB)
HTML

Accesses

Citation

Detail

段落导航
相关文章

/