目的 构建预测极早产儿住院期间死亡风险的列线图模型。 方法 回顾性分析2015年1月至2019年12月郑州大学第三附属医院新生儿科收治的极早产儿1 714例的临床资料。按7∶3比率将1 714例极早产儿随机分为训练队列(1 179例)和验证队列(535例),通过logistic回归分析筛选独立预测因子并建立列线图模型,并由验证集评估列线图预测模型的可行性。最后,分别采用受试者工作特征曲线下面积(area under curve,AUC)、校准曲线和决策曲线分析对模型的鉴别能力、准确性和临床实用性进行评估。 结果 1 714例极早产儿中,住院期间死亡260例,存活1 454例。对训练集进行多因素logistic回归分析后筛选出胎龄<28周、出生体重<1 000 g、重度窒息、重度脑室内出血(intraventricular hemorrhage,IVH)、Ⅲ~Ⅳ级新生儿呼吸窘迫综合征(respiratory distress syndrome,RDS)、败血症、剖宫产、孕母产前使用糖皮质激素等8个变量建立列线图预测模型。训练队列中列线图模型预测极早产儿住院期间死亡发生的AUC为0.790(95%CI:0.751~0.828),验证队列中列线图模型预测极早产儿住院期间死亡发生的AUC为0.808(95%CI:0.754~0.861)。Hosmer-Lemeshow拟合优度检验显示出较好的拟合度(P>0.05)。决策曲线分析显示当训练队列和验证队列的阈值概率分别为10%~60%和10%~70%时对极早产儿进行临床干预具有较高的净收益。 结论 构建并验证了预测极早产儿住院期间死亡风险的预测模型,可帮助临床医生预测极早产儿住院期间的死亡概率。
Abstract
Objective To establish a nomogram model for predicting the risk of death of very preterm infants during hospitalization. Methods A retrospective analysis was performed on the medical data of 1 714 very preterm infants who were admitted to the Department of Neonatology, the Third Affiliated Hospital of Zhengzhou University, from January 2015 to December 2019. These infants were randomly divided into a training cohort (1 179 infants) and a validation cohort (535 infants) at a ratio of 7∶3. The logistic regression analysis was used to screen out independent predictive factors and establish a nomogram model, and the feasibility of the nomogram model was assessed by the validation set. The area under the receiver operating characteristic curve (AUC), calibration curve, and decision curve analysis (DCA) were used to assess the discriminatory ability, accuracy, and clinical applicability of the model. Results Among the 1 714 very preterm infants, 260 died and 1 454 survived during hospitalization. By the multivariate logistic regression analysis of the training set, 8 variables including gestational age <28 weeks, birth weight <1 000 g, severe asphyxia, severe intraventricular hemorrhage (IVH), grade III-IV respiratory distress syndrome (RDS), and sepsis, cesarean section, and use of prenatal glucocorticoids were selected and a nomogram model for predicting the risk of death during hospitalization was established. In the training cohort, the nomogram model had an AUC of 0.790 (95%CI: 0.751-0.828) in predicting the death of very preterm infants during hospitalization, while in the validation cohort, it had an AUC of 0.808 (95%CI: 0.754-0.861). The Hosmer-Lemeshow goodness-of-fit test showed a good fit (P>0.05). DCA results showed a high net benefit of clinical intervention in very preterm infants when the threshold probability was 10%-60% for the training cohort and 10%-70% for the validation cohort. Conclusions A nomogram model for predicting the risk of death during hospitalization has been established and validated in very preterm infants, which can help clinicians predict the probability of death during hospitalization in these infants.
关键词
死亡 /
危险因素 /
列线图 /
预测模型 /
极早产儿
Key words
Death /
Risk factor /
Nomogram /
Predictive model /
Very preterm infant
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
1 Chawanpaiboon S, Vogel JP, Moller AB, et al. Global, regional, and national estimates of levels of preterm birth in 2014: a systematic review and modelling analysis[J]. Lancet Glob Health, 2019, 7(1): e37-e46. PMID: 30389451. PMCID: PMC6293055. DOI: 10.1016/S2214-109X(18)30451-0.
2 Lorch SA. A decade of improvement in neonatal intensive care: how do we continue the momentum?[J]. JAMA Pediatr, 2017, 171(3): e164395. PMID: 28068439. DOI: 10.1001/jamapediatrics.2016.4395.
3 Kaempf J, Morris M, Steffen E, et al. Continued improvement in morbidity reduction in extremely premature infants[J]. Arch Dis Child Fetal Neonatal Ed, 2021, 106(3): 265-270. PMID: 33109606. DOI: 10.1136/archdischild-2020-319961.
4 Pascal A, Govaert P, Oostra A, et al. Neurodevelopmental outcome in very preterm and very-low-birthweight infants born over the past decade: a meta-analytic review[J]. Dev Med Child Neurol, 2018, 60(4): 342-355. PMID: 29350401. DOI: 10.1111/dmcn.13675.
5 Wang Y, Sun K, Shen J, et al. Novel prognostic nomograms based on inflammation-related markers for patients with hepatocellular carcinoma underwent hepatectomy[J]. Cancer Res Treat, 2019, 51(4): 1464-1478. PMID: 30913869. PMCID: PMC6790828. DOI: 10.4143/crt.2018.657.
6 徐丛剑, 华克勤. 实用妇产科学[M]. 4版. 北京: 人民卫生出版社, 2018: 149-206.
7 中华医学会儿科学分会新生儿学组, 中国医师协会新生儿科医师分会感染专业委员会. 新生儿败血症诊断及治疗专家共识(2019年版)[J]. 中华儿科杂志, 2019, 57(4): 252-257. PMID: 30934196. DOI: 10.3760/cma.j.issn.0578-1310.2019.04.005.
8 Higgins RD, Jobe AH, Koso-Thomas M, et al. Bronchopulmonary dysplasia: executive summary of a workshop[J]. J Pediatr, 2018, 197: 300-308. PMID: 29551318. PMCID: PMC5970962. DOI: 10.1016/j.jpeds.2018.01.043.
9 邵肖梅, 叶鸿瑁, 丘小汕. 实用新生儿学[M]. 5版. 北京: 人民卫生出版社, 2019: 557-1027.
10 Hug L, Alexander M, You D, et al. National, regional, and global levels and trends in neonatal mortality between 1990 and 2017, with scenario-based projections to 2030: a systematic analysis[J]. Lancet Glob Health, 2019, 7(6): e710-e720. PMID: 31097275. PMCID: PMC6527519. DOI: 10.1016/S2214-109X(19)30163-9.
11 Qiao J, Wang Y, Li X, et al. A lancet commission on 70 years of women's reproductive, maternal, newborn, child, and adolescent health in China[J]. Lancet, 2021, 397(10293): 2497-2536. PMID: 34043953. DOI: 10.1016/S0140-6736(20)32708-2.
12 Schindler T, Koller-Smith L, Lui K, et al. Causes of death in very preterm infants cared for in neonatal intensive care units: a population-based retrospective cohort study[J]. BMC Pediatr, 2017, 17(1): 59. PMID: 28222717. PMCID: PMC5319155. DOI: 10.1186/s12887-017-0810-3.
13 Cao Y, Jiang S, Sun J, et al. Assessment of neonatal intensive care unit practices, morbidity, and mortality among very preterm infants in China[J]. JAMA Netw Open, 2021, 4(8): e2118904. PMID: 34338792. PMCID: PMC8329742. DOI: 10.1001/jamanetworkopen.2021.18904.
14 Ao D, Guo S, Yun C, et al. Socio-demographic factors impact disabilities caused by perinatal asphyxia among Chinese children[J]. PLoS One, 2021, 16(3): e0248154. PMID: 33667274. PMCID: PMC7935314. DOI: 10.1371/journal.pone.0248154.
15 Mamo SA, Teshome GS, Tesfaye T, et al. Perinatal asphyxia and associated factors among neonates admitted to a specialized public hospital in South Central Ethiopia: a retrospective cross-sectional study[J]. PLoS One, 2022, 17(1): e0262619. PMID: 35025979. PMCID: PMC8758104. DOI: 10.1371/journal.pone.0262619.
16 刘丽华, 张强, 曲丽. 四川省某三甲医院新生儿窒息的危险因素分析[J]. 广西医科大学学报, 2019, 36(4): 605-609. DOI: 10.16190/j.cnki.45-1211/r.2019.04.027.
17 江苏省NICU母乳喂养质量改进临床研究协作组. 江苏省13家医院极早产儿死亡危险因素分析[J]. 中华新生儿科杂志, 2021, 36(5): 24-29. DOI: 10.3760/cma.j.issn.2096-2932.2021.05.006.
18 廖鸣慧, 黄群, 龙小兰, 等. 2009-2019年湖南省新生儿死亡情况分析[J]. 中国妇幼保健, 2020, 35(21): 3917-3920. DOI: 10.19829/j.zgfybj.issn.1001-4411.2020.21.002.
19 H?rkin P, Marttila R, Pokka T, et al. Survival analysis of a cohort of extremely preterm infants born in Finland during 2005-2013[J]. J Matern Fetal Neonatal Med, 2021, 34(15): 2506-2512. PMID: 31522587. DOI: 10.1080/14767058.2019.1668925.
20 Mwita S, Jande M, Katabalo D, et al. Reducing neonatal mortality and respiratory distress syndrome associated with preterm birth: a scoping review on the impact of antenatal corticosteroids in low- and middle-income countries[J]. World J Pediatr, 2021, 17(2): 131-140. PMID: 33389692. DOI: 10.1007/s12519-020-00398-6.
21 Baseer KAA, Mohamed M, Abd-Elmawgood EA. Risk factors of respiratory diseases among neonates in neonatal intensive care unit of Qena University Hospital, Egypt[J]. Ann Glob Health, 2020, 86(1): 22. PMID: 32140431. PMCID: PMC7047767. DOI: 10.5334/aogh.2739.
22 Liu L, Oza S, Hogan D, et al. Global, regional, and national causes of child mortality in 2000-13, with projections to inform post-2015 priorities: an updated systematic analysis[J]. Lancet, 2015, 385(9966): 430-440. PMID: 25280870. DOI: 10.1016/S0140-6736(14)61698-6.
23 Giannoni E, Agyeman PKA, Stocker M, et al. Neonatal sepsis of early onset, and hospital-acquired and community-acquired late onset: a prospective population-based cohort study[J]. J Pediatr, 2018, 201: 106-114.e4. PMID: 30054165. DOI: 10.1016/j.jpeds.2018.05.048.
24 倪文泉, 陈名武, 潘家华, 等. 98例早产儿死亡原因分析[J]. 中华全科医学, 2018, 16(9): 1475-1478. DOI: 10.16766/j.cnki.issn.1674-4152.000403.
25 超未成熟儿与超低出生体重儿研究协作组. 超未成熟儿与超低出生体重儿产前糖皮质激素使用情况及其对预后影响的多中心调查[J]. 中华围产医学杂志, 2020, 23(5): 302-310. DOI: 10.3760/cma.j.cn113903-20190823-00512.
26 Melamed N, Murphy K, Barrett J, et al. Benefit of antenatal corticosteroids by year of birth among preterm infants in Canada during 2003-2017: a population-based cohort study[J]. BJOG, 2021, 128(3): 521-531. PMID: 32936996. DOI: 10.1111/1471-0528.16511.
27 Pierre C, Leroy A, Pierache A, et al. Is vaginal delivery of a fetus in breech presentation at an extremely preterm gestational age associated with an increased risk of neonatal death? A comparative study[J]. PLoS One, 2021, 16(10): e0258303. PMID: 34669715. PMCID: PMC8528279. DOI: 10.1371/journal.pone.0258303.
28 Godeluck A, Gérardin P, Lenclume V, et al. Mortality and severe morbidity of very preterm infants: comparison of two French cohort studies[J]. BMC Pediatr, 2019, 19(1): 360. PMID: 31623604. PMCID: PMC6796444. DOI: 10.1186/s12887-019-1700-7.
29 Sheikhtaheri A, Zarkesh MR, Moradi R, et al. Prediction of neonatal deaths in NICUs: development and validation of machine learning models[J]. BMC Med Inform Decis Mak, 2021, 21(1): 131. PMID: 33874944. PMCID: PMC8056638. DOI: 10.1186/s12911-021-01497-8.
基金
河南省卫生计生科技创新型人才“51282”工程(2016088)。