孤独症谱系障碍儿童肠道菌群多样性研究及功能预测分析

刘智程, 吴德, 屈爱娜, 王璐璐

中国当代儿科杂志 ›› 2022, Vol. 24 ›› Issue (12) : 1356-1364.

PDF(1544 KB)
HTML
PDF(1544 KB)
HTML
中国当代儿科杂志 ›› 2022, Vol. 24 ›› Issue (12) : 1356-1364. DOI: 10.7499/j.issn.1008-8830.2207130
论著·临床研究

孤独症谱系障碍儿童肠道菌群多样性研究及功能预测分析

  • 刘智程, 吴德, 屈爱娜, 王璐璐
作者信息 +

Diversity and functional prediction of gut microbiota in children with autism spectrum disorder

  • LIU Zhi-Cheng, WU De, QU Ai-Na, WANG Lu-Lu
Author information +
文章历史 +

摘要

目的 分析孤独症谱系障碍(autism spectrum disorder,ASD)儿童肠道菌群结构和多样性,并预测分析菌群的代谢功能。 方法 采集30例ASD儿童(ASD组)和20例正常发育(typically developing,TD)儿童(TD组)的粪便样本。提取基因组DNA,PCR扩增16S rDNA V4区,使用Illumina NovaSeq6000平台进行高通量测序。分析2组肠道菌群的构成和分布特征,并预测分析菌群的代谢功能。 结果 ASD组和TD组儿童肠道菌群的α多样性指数(Chao1、Shannon和Simpson)比较差异均无统计学意义(P>0.05)。在门和纲水平,2组儿童肠道菌群的结构差异无统计学意义(P>0.05)。在属水平,ASD组巨单胞菌属、巴恩斯氏菌属、小杆菌属、巨球菌属、瘤胃球菌属扭链群及梭杆菌属的丰度大于TD组(P<0.05)。功能预测分析显示,ASD组肠道菌群的色氨酸降解、谷氨酸降解及丁酸盐生成等代谢功能的丰度低于TD组(P<0.05),而γ-氨基丁酸降解功能的丰度高于TD组(P<0.05)。 结论 ASD儿童和TD儿童肠道菌群的α多样性无显著差异,但属水平物种构成不同,菌群的代谢功能有差别。

Abstract

Objective To study the structure and diversity of gut microbiota in children with autism spectrum disorder (ASD), and to predict the metabolic function of gut microbiota. Methods Fecal samples were collected from 30 ASD children (ASD group) and 20 typically developing (TD) children (TD group). Genomic DNA was extracted, the 16S rDNA V4 region was amplified by PCR, and Illumina NovaSeq6000 platform was used for high-throughput sequencing. The composition and distribution characteristics of gut microbiota were analyzed for the two groups, and the metabolic function of gut microbiota was predicted. Results There were no significant differences in alpha diversity indices (Chao1, Shannon, and Simpson) of gut microbiota between the ASD and TD groups (P>0.05). At the phylum and class levels, there was no significant difference in the structure of gut microbiota between the two groups (P>0.05). Compared with the TD group, the ASD group had significantly higher abundance of Megamonas, Barnesiella, Dialister, Megasphaera, Ruminococcus_torques_group, and Fusobacterium at the genus level (P<0.05). Functional prediction analysis showed that compared with the TD group, the ASD group had a significantly lower abundance of the gut microbiota with the metabolic functions such as tryptophan degradation, glutamate degradation, and butyrate production (P<0.05) and a significantly higher abundance of the gut microbiota with the metabolic function of GABA degradation (P<0.05). Conclusions There is no significant difference in the alpha diversity of gut microbiota between ASD children and TD children, while there are differences in the composition of species at the genus level and the metabolic functions of gut microbiota.

关键词

孤独症谱系障碍 / 肠道菌群 / 高通量测序 / 16S rDNA / 儿童

Key words

Autism spectrum disorder / Gut microbiota / High-throughput sequencing / 16S rDNA / Child

引用本文

导出引用
刘智程, 吴德, 屈爱娜, 王璐璐. 孤独症谱系障碍儿童肠道菌群多样性研究及功能预测分析[J]. 中国当代儿科杂志. 2022, 24(12): 1356-1364 https://doi.org/10.7499/j.issn.1008-8830.2207130
LIU Zhi-Cheng, WU De, QU Ai-Na, WANG Lu-Lu. Diversity and functional prediction of gut microbiota in children with autism spectrum disorder[J]. Chinese Journal of Contemporary Pediatrics. 2022, 24(12): 1356-1364 https://doi.org/10.7499/j.issn.1008-8830.2207130

参考文献

1 Maenner MJ, Shaw KA, Bakian AV, et al. Prevalence and characteristics of autism spectrum disorder among children aged 8 years—autism and developmental disabilities monitoring network, 11 sites, United States, 2018[J]. MMWR Surveill Summ, 2021, 70(11): 1-16. PMID: 34855725. PMCID: PMC8639024. DOI: 10.15585/mmwr.ss7011a1.
2 Zhou H, Xu X, Yan W, et al. Prevalence of autism spectrum disorder in China: a nationwide multi-center population-based study among children aged 6 to 12 years[J]. Neurosci Bull, 2020, 36(9): 961-971. PMID: 32607739. PMCID: PMC7475160. DOI: 10.1007/s12264-020-00530-6.
3 Lou M, Cao A, Jin C, et al. Deviated and early unsustainable stunted development of gut microbiota in children with autism spectrum disorder[J]. Gut, 2022, 71(8): 1588-1599. PMID: 34930815. PMCID: PMC9279844. DOI: 10.1136/gutjnl-2021-325115.
4 Kang DW, Ilhan ZE, Isern NG, et al. Differences in fecal microbial metabolites and microbiota of children with autism spectrum disorders[J]. Anaerobe, 2018, 49: 121-131. PMID: 29274915. DOI: 10.1016/j.anaerobe.2017.12.007.
5 Finegold SM, Dowd SE, Gontcharova V, et al. Pyrosequencing study of fecal microflora of autistic and control children[J]. Anaerobe, 2010, 16(4): 444-453. PMID: 20603222. DOI: 10.1016/j.anaerobe.2010.06.008.
6 Zhang M, Ma W, Zhang J, et al. Analysis of gut microbiota profiles and microbe-disease associations in children with autism spectrum disorders in China[J]. Sci Rep, 2018, 8(1): 13981. PMID: 30228282. PMCID: PMC6143520. DOI: 10.1038/s41598-018-32219-2.
7 American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders: DSM-5[M]. 5th ed. Arlington, VA, USA: American Psychiatric Association, 2013: 50-59.
8 Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing[J]. Nature, 2010, 464(7285): 59-65. PMID: 20203603. PMCID: PMC3779803. DOI: 10.1038/nature08821.
9 Martin R, Nauta AJ, Ben Amor K, et al. Early life: gut microbiota and immune development in infancy[J]. Benef Microbes, 2010, 1(4): 367-382. PMID: 21831776. DOI: 10.3920/BM2010.0027.
10 Sharon G, Cruz NJ, Kang DW, et al. Human gut microbiota from autism spectrum disorder promote behavioral symptoms in mice[J]. Cell, 2019, 177(6): 1600-1618.e17. PMID: 31150625. PMCID: PMC6993574. DOI: 10.1016/j.cell.2019.05.004.
11 Bonnechère B, Amin N, van Duijn C. The role of gut microbiota in neuropsychiatric diseases—creation of an atlas-based on quantified evidence[J]. Front Cell Infect Microbiol, 2022, 12: 831666. PMID: 35360098. PMCID: PMC8964285. DOI: 10.3389/fcimb.2022.831666.
12 Zou R, Xu F, Wang Y, et al. Changes in the gut microbiota of children with autism spectrum disorder[J]. Autism Res, 2020, 13(9): 1614-1625. PMID: 32830918. DOI: 10.1002/aur.2358.
13 Kieler IN, Shamzir Kamal S, Vitger AD, et al. Gut microbiota composition may relate to weight loss rate in obese pet dogs[J]. Vet Med Sci, 2017, 3(4): 252-262. PMID: 29152318. PMCID: PMC5677773. DOI: 10.1002/vms3.80.
14 Crovesy L, Masterson D, Rosado EL. Profile of the gut microbiota of adults with obesity: a systematic review[J]. Eur J Clin Nutr, 2020, 74(9): 1251-1262. PMID: 32231226. DOI: 10.1038/s41430-020-0607-6.
15 赵锐豪, 郑鹏远, 刘思濛, 等. 孤独症谱系障碍儿童肠道菌群与行为症状的相关研究[J]. 中国当代儿科杂志, 2019, 21(7): 663-669. PMID: 31315765. PMCID: PMC7389106. DOI: 10.7499/j.issn.1008-8830.2019.07.009.
16 Liu S, Li E, Sun Z, et al. Altered gut microbiota and short chain fatty acids in Chinese children with autism spectrum disorder[J]. Sci Rep, 2019, 9(1): 287. PMID: 30670726. PMCID: PMC6342986. DOI: 10.1038/s41598-018-36430-z.
17 Averina OV, Kovtun AS, Polyakova SI, et al. The bacterial neurometabolic signature of the gut microbiota of young children with autism spectrum disorders[J]. J Med Microbiol, 2020, 69(4): 558-571. PMID: 32213246. DOI: 10.1099/jmm.0.001178.
18 Ubeda C, Bucci V, Caballero S, et al. Intestinal microbiota containing Barnesiella species cures vancomycin-resistant Enterococcus faecium colonization[J]. Infect Immun, 2013, 81(3): 965-973. PMID: 23319552. PMCID: PMC3584866. DOI: 10.1128/IAI.01197-12.
19 Presley LL, Wei B, Braun J, et al. Bacteria associated with immunoregulatory cells in mice[J]. Appl Environ Microbiol, 2010, 76(3): 936-941. PMID: 20008175. PMCID: PMC2813032. DOI: 10.1128/AEM.01561-09.
20 Ye J, Lee JW, Presley LL, et al. Bacteria and bacterial rRNA genes associated with the development of colitis in IL-10(-/-) mice[J]. Inflamm Bowel Dis, 2008, 14(8): 1041-1050. PMID: 18381614. PMCID: PMC3804113. DOI: 10.1002/ibd.20442.
21 Savage JH, Lee-Sarwar KA, Sordillo J, et al. A prospective microbiome-wide association study of food sensitization and food allergy in early childhood[J]. Allergy, 2018, 73(1): 145-152. PMID: 28632934. PMCID: PMC5921051. DOI: 10.1111/all.13232.
22 Ye F, Gao X, Wang Z, et al. Comparison of gut microbiota in autism spectrum disorders and neurotypical boys in China: a case-control study[J]. Synth Syst Biotechnol, 2021, 6(2): 120-126. PMID: 34095558. PMCID: PMC8163862. DOI: 10.1016/j.synbio.2021.03.003.
23 Hashizume K, Tsukahara T, Yamada K, et al. Megasphaera elsdenii JCM1772T normalizes hyperlactate production in the large intestine of fructooligosaccharide-fed rats by stimulating butyrate production[J]. J Nutr, 2003, 133(10): 3187-3190. PMID: 14519808. DOI: 10.1093/jn/133.10.3187.
24 Chrisman BS, Paskov KM, Stockham N, et al. Improved detection of disease-associated gut microbes using 16S sequence-based biomarkers[J]. BMC Bioinformatics, 2021, 22(1): 509. PMID: 34666677. PMCID: PMC8527694. DOI: 10.1186/s12859-021-04427-7.
25 Ahmed SA, Elhefnawy AM, Azouz HG, et al. Study of the gut microbiome profile in children with autism spectrum disorder: a single tertiary hospital experience[J]. J Mol Neurosci, 2020, 70(6): 887-896. PMID: 32062762. DOI: 10.1007/s12031-020-01500-3.
26 Laue HE, Korrick SA, Baker ER, et al. Prospective associations of the infant gut microbiome and microbial function with social behaviors related to autism at age 3 years[J]. Sci Rep, 2020, 10(1): 15515. PMID: 32968156. PMCID: PMC7511970. DOI: 10.1038/s41598-020-72386-9.
27 Lee GA, Lin YK, Lai JH, et al. Maternal immune activation causes social behavior deficits and hypomyelination in male rat offspring with an autism-like microbiota profile[J]. Brain Sci, 2021, 11(8): 1085. PMID: 34439704. PMCID: PMC8391334. DOI: 10.3390/brainsci11081085.
28 Martin CR, Osadchiy V, Kalani A, et al. The brain-gut-microbiome axis[J]. Cell Mol Gastroenterol Hepatol, 2018, 6(2): 133-148. PMID: 30023410. PMCID: PMC6047317. DOI: 10.1016/j.jcmgh.2018.04.003.

PDF(1544 KB)
HTML

Accesses

Citation

Detail

段落导航
相关文章

/