2型固有淋巴细胞及其相关因子在支气管肺发育不良中的变化及意义

王倩文, 朱玥, 王秋霞, 卢红艳

中国当代儿科杂志 ›› 2023, Vol. 25 ›› Issue (2) : 179-185.

PDF(710 KB)
HTML
PDF(710 KB)
HTML
中国当代儿科杂志 ›› 2023, Vol. 25 ›› Issue (2) : 179-185. DOI: 10.7499/j.issn.1008-8830.2210005
论著·临床研究

2型固有淋巴细胞及其相关因子在支气管肺发育不良中的变化及意义

  • 王倩文, 朱玥, 王秋霞, 卢红艳
作者信息 +

Changes and significance of type 2 innate lymphoid cells and their related factors in bronchopulmonary dysplasia

  • WANG Qian-Wen, ZHU Yue, WANG Qiu-Xia, LU Hong-Yan
Author information +
文章历史 +

摘要

目的 探讨支气管肺发育不良(bronchopulmonary dysplasia,BPD)早产儿外周血2型固有淋巴细胞(group 2 innate lymphoid cell,ILC2)及白细胞介素(interleukin,IL)-33、IL-25、胸腺基质淋巴生成素(thymic stromal lymphopoietin,TSLP)、IL-5、IL-13的变化及意义。 方法 选择2020年9月—2021年12月江苏大学附属医院儿科收治的胎龄<32周且住院时间≥14 d的76例早产儿为研究对象,根据BPD诊断标准分为BPD组(n=30)和非BPD组(n=46),比较两组早产儿生后1 d、7 d及14 d外周血ILC2占淋巴细胞百分率,以及IL-33、IL-25、TSLP、IL-5、IL-13水平差异及意义。 结果 BPD组早产儿出生体重及胎龄低于非BPD组(P<0.05)。生后7 d和14 d,BPD组ILC2、IL-33、TSLP及IL-5水平均高于非BPD组(P<0.05),其预测BPD发生的曲线下面积均>0.7(P<0.05)。多因素logistic回归分析显示,校正胎龄和出生体重后,生后7 d和14 d外周血IL-33、TSLP及IL-5与BPD发生密切相关(P<0.05)。 结论 BPD早产儿生后早期固有免疫活化伴随相关因子表达上调,其中ILC2、IL-33、TSLP及IL-5是具有早期诊断价值的生物学指标。

Abstract

Objective To investigate the changes and significance of type 2 innate lymphoid cells (ILC2), interleukin-33 (IL-33), interleukin-25 (IL-25), thymic stromal lymphopoietin (TSLP), interleukin-5 (IL-5), and interleukin-13 (IL-13) in peripheral blood of preterm infants with bronchopulmonary dysplasia (BPD). Methods A total of 76 preterm infants with a gestational age of <32 weeks and a length of hospital stay of ≥14 days who were admitted to the Department of Pediatrics of the Affiliated Hospital of Jiangsu University from September 2020 to December 2021 were enrolled. According to the diagnostic criteria for BPD, they were divided into a BPD group with 30 infants and a non-BPD group with 46 infants. The two groups were compared in terms of the percentage of ILC2 and the levels of IL-33, IL-25, TSLP, IL-5, and IL-13 in peripheral blood on days 1, 7, and 14 after birth. Results The BPD group had significantly lower birth weight and gestational age than the non-BPD group (P<0.05). On days 7 and 14 after birth, the BPD group had significantly higher levels of ILC2, IL-33, TSLP, and IL-5 than the non-BPD group (P<0.05), and these indices had an area under the curve of >0.7 in predicting the devolpment of BPD (P<0.05). Multivariate logistic regression analysis showed that after adjusting for gestational age and birth weight, peripheral blood IL-33, TSLP and IL-5 on days 7 and 14 after birth were closely related to the devolpment of BPD (P<0.05). Conclusions Early innate immune activation and upregulated expression of related factors may be observed in preterm infants with BPD. ILC2, IL-33, TSLP, and IL-5 may be used as biological indicators for early diagnosis of BPD.

关键词

支气管肺发育不良 / 2型固有淋巴细胞 / 细胞因子 / 早产儿

Key words

Bronchopulmonary dysplasia / Type 2 innate lymphoid cell / Cytokine / Preterm infant

引用本文

导出引用
王倩文, 朱玥, 王秋霞, 卢红艳. 2型固有淋巴细胞及其相关因子在支气管肺发育不良中的变化及意义[J]. 中国当代儿科杂志. 2023, 25(2): 179-185 https://doi.org/10.7499/j.issn.1008-8830.2210005
WANG Qian-Wen, ZHU Yue, WANG Qiu-Xia, LU Hong-Yan. Changes and significance of type 2 innate lymphoid cells and their related factors in bronchopulmonary dysplasia[J]. Chinese Journal of Contemporary Pediatrics. 2023, 25(2): 179-185 https://doi.org/10.7499/j.issn.1008-8830.2210005

参考文献

1 张茹, 徐发林, 李文丽, 等. 早产儿支气管肺发育不良早期风险预测模型的构建[J]. 中国当代儿科杂志, 2021, 23(10): 994-1001. PMID: 34719413. PMCID: PMC8549639. DOI: 10.7499/j.issn.1008-8830.2107035.
2 Lapcharoensap W, Gage SC, Kan P, et al. Hospital variation and risk factors for bronchopulmonary dysplasia in a population-based cohort[J]. JAMA Pediatr, 2015, 169(2): e143676. PMID: 25642906. DOI: 10.1001/jamapediatrics.2014.3676.
3 Jensen EA, Dysart K, Gantz MG, et al. The diagnosis of bronchopulmonary dysplasia in very preterm infants. An evidence-based approach[J]. Am J Respir Crit Care Med, 2019, 200(6): 751-759. PMID: 30995069. PMCID: PMC6775872. DOI: 10.1164/rccm.201812-2348OC.
4 Saluzzo S, Gorki AD, Rana BMJ, et al. First-breath-induced type 2 pathways shape the lung immune environment[J]. Cell Rep, 2017, 18(8): 1893-1905. PMID: 28228256. PMCID: PMC5329122. DOI: 10.1016/j.celrep.2017.01.071.
5 Loering S, Cameron GJM, Starkey MR, et al. Lung development and emerging roles for type 2 immunity[J]. J Pathol, 2019, 247(5): 686-696. PMID: 30506724. DOI: 10.1002/path.5211.
6 Schneider C, Lee J, Koga S, et al. Tissue-resident group 2 innate lymphoid cells differentiate by layered ontogeny and in situ perinatal priming[J]. Immunity, 2019, 50(6): 1425-1438.e5. PMID: 31128962. PMCID: PMC6645687. DOI: 10.1016/j.immuni.2019.04.019.
7 Martinez-Gonzalez I, Math? L, Steer CA, et al. Allergen-experienced group 2 innate lymphoid cells acquire memory-like properties and enhance allergic lung inflammation[J]. Immunity, 2016, 45(1): 198-208. PMID: 27421705. DOI: 10.1016/j.immuni.2016.06.017.
8 Bartemes KR, Iijima K, Kobayashi T, et al. IL-33-responsive lineage-CD25+CD44hi lymphoid cells mediate innate type 2 immunity and allergic inflammation in the lungs[J]. J Immunol, 2012, 188(3): 1503-1513. PMID: 22198948. PMCID: PMC3262877. DOI: 10.4049/jimmunol.1102832.
9 Cakir U, Tayman C, Yucel C. A novel diagnostic marker for the severity of bronchopulmonary dysplasia in very low birth weight infants: interleukin-33[J]. Pediatr Allergy Immunol Pulmonol, 2019, 32(1): 12-17. PMID: 31508250. PMCID: PMC6733051. DOI: 10.1089/ped.2019.0994.
10 Petersen BC, Lukacs NW. IL-17A and IL-25: therapeutic targets for allergic and exacerbated asthmatic disease[J]. Future Med Chem, 2012, 4(7): 833-836. PMID: 22571608. DOI: 10.4155/fmc.12.39.
11 Soumelis V, Reche PA, Kanzler H, et al. Human epithelial cells trigger dendritic cell-mediated allergic inflammation by producing TSLP[J]. Nat Immunol, 2002, 3(7): 673-680. PMID: 12055625. DOI: 10.1038/ni805.
12 Mi L, Zhu S, Cai J, et al. Tissue-resident type 2 innate lymphoid cells arrest alveolarization in bronchopulmonary dysplasia[J]. J Immunol Res, 2020, 2020: 8050186. PMID: 33178840. PMCID: PMC7648679. DOI: 10.1155/2020/8050186.
13 陈俊龙, 张春丽. 支气管肺发育不良患儿血清白细胞介素33的水平变化及临床意义[J]. 中国当代儿科杂志, 2020, 22(7): 716-720. PMID: 32669167. PMCID: PMC7389611. DOI: 10.7499/j.issn.1008-8830.2001063.
14 Higgins RD, Jobe AH, Koso-Thomas M, et al. Bronchopulmonary dysplasia: executive summary of a workshop[J]. J Pediatr, 2018, 197: 300-308. PMID: 29551318. PMCID: PMC5970962. DOI: 10.1016/j.jpeds.2018.01.043.
15 Ghaedi M, Shen ZY, Orangi M, et al. Single-cell analysis of RORα tracer mouse lung reveals ILC progenitors and effector ILC2 subsets[J]. J Exp Med, 2020, 217(3): 20182293. PMID: 31816636. PMCID: PMC7062532. DOI: 10.1084/jem.20182293.
16 王家良. 临床流行病学——临床科研设计、测量与评价[M]. 3版. 上海: 上海科学技术出版社, 2009: 156-178.
17 Vivier E, Artis D, Colonna M, et al. Innate lymphoid cells: 10 years on[J]. Cell, 2018, 174(5): 1054-1066. PMID: 30142344. DOI: 10.1016/j.cell.2018.07.017.
18 Mj?sberg JM, Trifari S, Crellin NK, et al. Human IL-25- and IL-33-responsive type 2 innate lymphoid cells are defined by expression of CRTH2 and CD161[J]. Nat Immunol, 2011, 12(11): 1055-1062. PMID: 21909091. DOI: 10.1038/ni.2104.
19 徐儒政, 姜旭, 孙斌. 胎龄<32周早产儿支气管肺发育不良临床特点[J]. 临床儿科杂志, 2022, 40(6): 420-424. DOI: 10.12372/jcp.2022.21e0945.
20 Kabata H, Moro K, Koyasu S. The group 2 innate lymphoid cell (ILC2) regulatory network and its underlying mechanisms[J]. Immunol Rev, 2018, 286(1): 37-52. PMID: 30294963. DOI: 10.1111/imr.12706.
21 Cai T, Qiu J, Ji Y, et al. IL-17-producing ST2+ group 2 innate lymphoid cells play a pathogenic role in lung inflammation[J]. J Allergy Clin Immunol, 2019, 143(1): 229-244.e9. PMID: 29625134. PMCID: PMC6170730. DOI: 10.1016/j.jaci.2018.03.007.
22 Christianson CA, Goplen NP, Zafar I, et al. Persistence of asthma requires multiple feedback circuits involving type 2 innate lymphoid cells and IL-33[J]. J Allergy Clin Immunol, 2015, 136(1): 59-68.e14. PMID: 25617223. PMCID: PMC4494983. DOI: 10.1016/j.jaci.2014.11.037.
23 Cheon IS, Son YM, Jiang L, et al. Neonatal hyperoxia promotes asthma-like features through IL-33-dependent ILC2 responses[J]. J Allergy Clin Immunol, 2018, 142(4): 1100-1112. PMID: 29253513. PMCID: PMC6003836. DOI: 10.1016/j.jaci.2017.11.025.
24 Drake LY, Kita H. IL-33: biological properties, functions, and roles in airway disease[J]. Immunol Rev, 2017, 278(1): 173-184. PMID: 28658560. PMCID: PMC5492954. DOI: 10.1111/imr.12552.
25 Tang X. Interleukin-33 (IL-33) increases hyperoxia-induced bronchopulmonary dysplasia in newborn mice by regulation of inflammatory mediators[J]. Med Sci Monit, 2018, 24: 6717-6728. PMID: 30244258. PMCID: PMC6266634. DOI: 10.12659/MSM.910851.
26 Ying S, O'Connor B, Ratoff J, et al. Expression and cellular provenance of thymic stromal lymphopoietin and chemokines in patients with severe asthma and chronic obstructive pulmonary disease[J]. J Immunol, 2008, 181(4): 2790-2798. PMID: 18684970. DOI: 10.4049/jimmunol.181.4.2790.
27 Zhou B, Comeau MR, De Smedt T, et al. Thymic stromal lymphopoietin as a key initiator of allergic airway inflammation in mice[J]. Nat Immunol, 2005, 6(10): 1047-1053. PMID: 16142237. DOI: 10.1038/ni1247.
28 Al-Shami A, Spolski R, Kelly J, et al. A role for TSLP in the development of inflammation in an asthma model[J]. J Exp Med, 2005, 202(6): 829-839. PMID: 16172260. PMCID: PMC2212950. DOI: 10.1084/jem.20050199.
29 Takatsu K. Interleukin-5 and IL-5 receptor in health and diseases[J]. Proc Jpn Acad Ser B Phys Biol Sci, 2011, 87(8): 463-485. PMID: 21986312. PMCID: PMC3313690. DOI: 10.2183/pjab.87.463.
30 Lao JC, Bui CB, Pang MA, et al. Type 2 immune polarization is associated with cardiopulmonary disease in preterm infants[J]. Sci Transl Med, 2022, 14(639): eaaz8454. PMID: 35385341. DOI: 10.1126/scitranslmed.aaz8454.

基金

国家自然科学基金资助项目(82171702);江苏省自然科学基金资助项目(BK20201226)。

PDF(710 KB)
HTML

Accesses

Citation

Detail

段落导航
相关文章

/