嵌合抗原受体T细胞在儿童复发难治性急性淋巴细胞白血病中的研究进展

韦楠, 陈天平

中国当代儿科杂志 ›› 2023, Vol. 25 ›› Issue (2) : 210-216.

PDF(558 KB)
PDF(558 KB)
中国当代儿科杂志 ›› 2023, Vol. 25 ›› Issue (2) : 210-216. DOI: 10.7499/j.issn.1008-8830.2210056
综述

嵌合抗原受体T细胞在儿童复发难治性急性淋巴细胞白血病中的研究进展

  • 韦楠, 陈天平
作者信息 +

Recent research on chimeric antigen receptor T cells in children with refractory/relapsed acute lymphoblastic leukemia

  • WEI Nan, CHEN Tian-Ping
Author information +
文章历史 +

摘要

目前儿童复发难治性急性淋巴细胞白血病的治疗仍处于困境,即使提高化疗强度或联合造血干细胞移植,仍有部分患儿预后差,生存期短。嵌合抗原受体T细胞(chimeric antigen receptor T-cell,CAR-T)免疫疗法通过基因工程修饰T细胞,并利用不依赖于人类白细胞抗原途径识别肿瘤特异性抗原,靶向结合目标抗原细胞,触发免疫反应,从而发挥持续的抗白血病效应。作为发展最为迅速的肿瘤免疫疗法,CAR-T细胞在多种血液肿瘤的治疗中取得了突破性的进展,但目前国内尚未建立全面的CAR-T细胞研发生产体系和规范的临床诊治方案。该文就CAR-T细胞在儿童复发难治性急性淋巴细胞白血病中的研究进展作一综述。

Abstract

At present, the treatment of refractory/relapsed acute lymphoblastic leukemia is still in a difficult situation, and even if the intensity of chemotherapy is increased or it is combined with hematopoietic stem cell transplantation, some children may have a poor prognosis and a short survival time. Chimeric antigen receptor T-cell (CAR-T) immunotherapy uses genetically engineered T cells and does not rely on the human leukocyte antigen pathway to recognize tumor-specific antigens, and then CAR-T cells bind to target antigen cells to trigger immune response, thereby exerting a sustained anti-leukemia effect. As the most rapidly developed tumor immunotherapy, major breakthroughs have been made for CAR-T cells in the treatment of various hematological tumors, but there still lacks a comprehensive system for the research, development, and production of CAR-T cells and standardized diagnosis and treatment protocols in China. This article reviews the recent research on CAR-T cells in children with refractory/relapsed acute lymphoblastic leukemia.

关键词

急性淋巴细胞白血病 / 嵌合抗原受体T细胞 / 免疫治疗 / 儿童

Key words

Acute lymphoblastic leukemia / Chimeric antigen receptor T cell / Immunotherapy / Child

引用本文

导出引用
韦楠, 陈天平. 嵌合抗原受体T细胞在儿童复发难治性急性淋巴细胞白血病中的研究进展[J]. 中国当代儿科杂志. 2023, 25(2): 210-216 https://doi.org/10.7499/j.issn.1008-8830.2210056
WEI Nan, CHEN Tian-Ping. Recent research on chimeric antigen receptor T cells in children with refractory/relapsed acute lymphoblastic leukemia[J]. Chinese Journal of Contemporary Pediatrics. 2023, 25(2): 210-216 https://doi.org/10.7499/j.issn.1008-8830.2210056

参考文献

1 Chen SL, Zhang H, Gale RP, et al. Toward the cure of acute lymphoblastic leukemia in children in China[J]. JCO Glob Oncol, 2021, 7: 1176-1186. PMID: 34292767. PMCID: PMC8457838. DOI: 10.1200/GO.21.00049.
2 Jensen KS, Oskarsson T, L?hteenm?ki PM, et al. Temporal changes in incidence of relapse and outcome after relapse of childhood acute lymphoblastic leukemia over three decades; a Nordic population-based cohort study[J]. Leukemia, 2022, 36(5): 1274-1282. PMID: 35314777. DOI: 10.1038/s41375-022-01540-1.
3 曹星玉, 邱丽媛, 张建平, 等. CART序贯二次异基因造血干细胞移植治疗移植后复发急性B淋巴细胞白血病41例临床分析[J]. 中华血液学杂志, 2021, 42(4): 318-323. PMID: 33979977. PMCID: PMC8120115. DOI: 10.3760/cma.j.issn.0253-2727.2021.04.009.
4 Crotta A, Zhang J, Keir C. Survival after stem-cell transplant in pediatric and young-adult patients with relapsed and refractory B-cell acute lymphoblastic leukemia[J]. Curr Med Res Opin, 2018, 34(3): 435-440. PMID: 28945102. DOI: 10.1080/03007995.2017.1384373.
5 Mostafa Kamel Y. CAR-T therapy, the end of a chapter or the beginning of a new one?[J]. Cancers (Basel), 2021, 13(4): 853. PMID: 33670515. PMCID: PMC7922383. DOI: 10.3390/cancers13040853.
6 Li G, Boucher JC, Kotani H, et al. 4-1BB enhancement of CAR T function requires NF-κB and TRAFs[J]. JCI insight, 2018, 3(18): e121322. PMID: 30232281. PMCID: PMC6237232. DOI: 10.1172/jci.insight.121322.
7 Sun C, Shou P, Du H, et al. THEMIS-SHP1 recruitment by 4-1BB tunes LCK-mediated priming of chimeric antigen receptor-redirected T cells[J]. Cancer Cell, 2020, 37(2): 216-225.e6. PMID: 32004441. PMCID: PMC7397569. DOI: 10.1016/j.ccell.2019.12.014.
8 Ragoonanan D, Sheikh IN, Gupta S, et al. The evolution of chimeric antigen receptor T-cell therapy in children, adolescents and young adults with acute lymphoblastic leukemia[J]. Biomedicines, 2022, 10(9): 2286. PMID: 36140387. PMCID: PMC9496125. DOI: 10.3390/biomedicines10092286.
9 Grupp SA, Kalos M, Barrett D, et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia[J]. N Engl J Med, 2013, 368(16): 1509-1518. PMID: 23527958. PMCID: PMC4058440. DOI: 10.1056/NEJMoa1215134.
10 Maude SL, Laetsch TW, Buechner J, et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia[J]. N Engl J Med, 2018, 378(5): 439-448. PMID: 29385370. PMCID: PMC5996391. DOI: 10.1056/NEJMoa1709866.
11 Tan Y, Pan J, Deng B, et al. Toxicity and effectiveness of CD19 CAR T therapy in children with high-burden central nervous system refractory B-ALL[J]. Cancer Immunol Immunother, 2021, 70(7): 1979-1993. PMID: 33416942. DOI: 10.1007/s00262-020-02829-9.
12 Chen X, Wang Y, Ruan M, et al. Treatment of testicular relapse of b-cell acute lymphoblastic leukemia with CD19-specific chimeric antigen receptor T cells[J]. Clin Lymphoma Myeloma Leuk, 2020, 20(6): 366-370. PMID: 32205078. PMCID: PMC8312220. DOI: 10.1016/j.clml.2019.10.016.
13 Stefanski H, Eaton A, Baggott C, et al. Higher doses of tisagenlecleucel associate with improved outcomes: a report from the pediatric real-world CAR consortium[J]. Blood Adv, 2022, bloodadvances.2022007246. PMID: 35938863. DOI: 10.1182/bloodadvances.2022007246. Epub ahead of print.
14 Wayne AS, Huynh V, Hijiya N, et al. Three-year results from phase 1 of ZUMA-4: KTE-X19 in pediatric relapsed/refractory acute lymphoblastic leukemia[J]. Haematologica, 2022. PMID: 36263840. Epub ahead of print. DOI: 10.3324/haematol.2022.280678.
15 Shah NN, Lee DW, Yates B, et al. Long-term follow-up of CD19-CAR T-cell therapy in children and young adults with B-ALL[J]. J Clin Oncol, 2021, 39(15): 1650-1659. PMID: 33764809. PMCID: PMC8274806. DOI: 10.1200/JCO.20.02262.
16 Schultz LM, Baggott C, Prabhu S, et al. Disease burden affects outcomes in pediatric and young adult B-cell lymphoblastic leukemia after commercial tisagenlecleucel: a pediatric real-world chimeric antigen receptor consortium report[J]. J Clin Oncol, 2022, 40(9): 945-955. PMID: 34882493. PMCID: PMC9384925. DOI: 10.1200/JCO.20.03585.
17 Zhang X, Yang J, Li J, et al. Factors associated with treatment response to CD19 CAR-T therapy among a large cohort of B cell acute lymphoblastic leukemia[J]. Cancer Immunol Immunother, 2022, 71(3): 689-703. PMID: 34365516. DOI: 10.1007/s00262-021-03009-z.
18 Zhang C, Wang XQ, Zhang RL, et al. Donor-derived CD19 CAR-T cell therapy of relapse of CD19-positive B-ALL post allotransplant[J]. Leukemia, 2021, 35(6): 1563-1570. PMID: 33077866. PMCID: PMC8179843. DOI: 10.1038/s41375-020-01056-6.
19 Wei Z, Cheng Q, Xu N, et al. Investigation of CRS-associated cytokines in CAR-T therapy with meta-GNN and pathway crosstalk[J]. BMC Bioinformatics, 2022, 23(1): 373. PMID: 36100873. PMCID: PMC9469618. DOI: 10.1186/s12859-022-04917-2.
20 Levine JE, Grupp SA, Pulsipher MA, et al. Pooled safety analysis of tisagenlecleucel in children and young adults with B cell acute lymphoblastic leukemia[J]. J Immunother Cancer, 2021, 9(8): e002287. PMID: 34353848. PMCID: PMC8344270. DOI: 10.1136/jitc-2020-002287.
21 Zhang Y, Zhou F, Wu Z, et al. Timing of tocilizumab administration under the guidance of IL-6 in CAR-T therapy for R/R acute lymphoblastic leukemia[J]. Front Immunol, 2022, 13: 914959. PMID: 35799791. PMCID: PMC9253384. DOI: 10.3389/fimmu.2022.914959.
22 Korell F, Penack O, Mattie M, et al. EASIX and severe endothelial complications after CD19-directed CAR-T cell therapy-a cohort study[J]. Front Immunol, 2022, 13: 877477. PMID: 35464403. PMCID: PMC9033201. DOI: 10.3389/fimmu.2022.877477.
23 Zhang N, Shao J, Li H, et al. Humanized CD19-directed CAR-T Cell therapy in pediatric relapsed/refractory acute lymphoblastic leukemia with CNSL or neurological comorbidity[J]. J Immunother, 2022, 45(9): 396-406. PMID: 36018262. PMCID: PMC9528944. DOI: 10.1097/CJI.0000000000000437.
24 Schoeberl F, Tiedt S, Schmitt A, et al. Neurofilament light chain serum levels correlate with the severity of neurotoxicity after CAR T-cell treatment[J]. Blood Adv, 2022, 6(10): 3022-3026. PMID: 35042236. PMCID: PMC9131908. DOI: 10.1182/bloodadvances.2021006144.
25 Wehrli M, Gallagher K, Chen YB, et al. Single-center experience using anakinra for steroid-refractory immune effector cell-associated neurotoxicity syndrome (ICANS)[J]. J Immunother Cancer, 2022, 10(1): e003847. PMID: 34996813. PMCID: PMC8744112. DOI: 10.1136/jitc-2021-003847.
26 Ghorashian S, Jacoby E, De Moerloose B, et al. Tisagenlecleucel therapy for relapsed or refractory B-cell acute lymphoblastic leukaemia in infants and children younger than 3 years of age at screening: an international, multicentre, retrospective cohort study[J]. Lancet Haematol, 2022, 9(10): e766-e775. PMID: 36084658. DOI: 10.1016/S2352-3026(22)00225-3.
27 Kampouri E, Walti CS, Gauthier J, et al. Managing hypogammaglobulinemia in patients treated with CAR-T-cell therapy: key points for clinicians[J]. Expert Rev Hematol, 2022, 15(4): 305-320. PMID: 35385358. DOI: 10.1080/17474086.2022.2063833.
28 Brudno JN, Natrakul D, Lam N, et al. Acute and delayed cytopenias following CAR T-cell therapy: an investigation of risk factors and mechanisms[J]. Leuk Lymphoma, 2022, 63(8): 1849-1860. PMID: 35389319. DOI: 10.1080/10428194.2022.2056172.
29 Xia Y, Zhang J, Li J, et al. Cytopenias following anti-CD19 chimeric antigen receptor (CAR) T cell therapy: a systematic analysis for contributing factors[J]. Ann Med, 2022, 54(1): 2951-2965. PMID: 36382675. PMCID: PMC9673810. DOI: 10.1080/07853890.2022.2136748.
30 Lee DW, Kochenderfer JN, Stetler-Stevenson M, et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial[J]. Lancet, 2015, 385(9967): 517-528. PMID: 25319501. PMCID: PMC7065359. DOI: 10.1016/S0140-6736(14)61403-3.
31 Callahan C, Barry A, Fooks-Parker S, et al. Pediatric survivorship: considerations following CAR T-cell therapy[J]. Clin J Oncol Nurs, 2019, 23(2): 35-41. PMID: 30880817. DOI: 10.1188/19.CJON.S1.35-41.
32 Hill JA, Li D, Hay KA, et al. Infectious complications of CD19-targeted chimeric antigen receptor-modified T-cell immunotherapy[J]. Blood, 2018, 131(1): 121-130. PMID: 29038338. PMCID: PMC5755046. DOI: 10.1182/blood-2017-07-793760.
33 Johnsrud A, Craig J, Baird J, et al. Incidence and risk factors associated with bleeding and thrombosis following chimeric antigen receptor T-cell therapy[J]. Blood Adv, 2021, 5(21): 4465-4475. PMID: 34521106. PMCID: PMC8579267. DOI: 10.1182/bloodadvances.2021004716.
34 Xu X, Sun Q, Liang X, et al. Mechanisms of relapse after CD19 CAR T-cell therapy for acute lymphoblastic leukemia and its prevention and treatment strategies[J]. Front Immunol, 2019, 10: 2664. PMID: 31798590. PMCID: PMC6863137. DOI: 10.3389/fimmu.2019.02664.
35 Zheng S, Asnani M, Thomas-Tikhonenko A. Escape from ALL-CARTaz: leukemia immunoediting in the age of chimeric antigen receptors[J]. Cancer J, 2019, 25(3): 217-222. PMID: 31135529. PMCID: PMC6617517. DOI: 10.1097/PPO.0000000000000381.
36 Yu H, Sotillo E, Harrington C, et al. Repeated loss of target surface antigen after immunotherapy in primary mediastinal large B cell lymphoma[J]. Am J Hematol, 2017, 92(1): E11-E13. PMID: 27779774. PMCID: PMC8620941. DOI: 10.1002/ajh.24594.
37 Hamieh M, Dobrin A, Cabriolu A, et al. CAR T cell trogocytosis and cooperative killing regulate tumour antigen escape[J]. Nature, 2019, 568(7750): 112-116. PMID: 30918399. PMCID: PMC6707377. DOI: 10.1038/s41586-019-1054-1.
38 Ledererova A, Dostalova L, Kozlova V, et al. Hypermethylation of CD19 promoter enables antigen-negative escape to CART-19 in vivo and in vitro[J]. J Immunother Cancer, 2021, 9(8): e002352. PMID: 34413165. PMCID: PMC8378389. DOI: 10.1136/jitc-2021-002352.
39 Lei X, Lei Y, Li JK, et al. Immune cells within the tumor microenvironment: biological functions and roles in cancer immunotherapy[J]. Cancer Lett, 2020, 470: 126-133. PMID: 31730903. DOI: 10.1016/j.canlet.2019.11.009.
40 Zhang M, Jin X, Sun R, et al. Optimization of metabolism to improve efficacy during CAR-T cell manufacturing[J]. J Transl Med, 2021, 19(1): 499. PMID: 34876185. PMCID: PMC8650271. DOI: 10.1186/s12967-021-03165-x.
41 Hatic H, Sampat D, Goyal G. Immune checkpoint inhibitors in lymphoma: challenges and opportunities[J]. Ann Transl Med, 2021, 9(12): 1037. PMID: 34277837. PMCID: PMC8267255. DOI: 10.21037/atm-20-6833.
42 Tschumi BO, Dumauthioz N, Marti B, et al. CART cells are prone to Fas- and Dr5-mediated cell death[J]. J Immunother Cancer, 2018, 6(1): 71. PMID: 30005714. PMCID: PMC6045821. DOI: 10.1186/s40425-018-0385-z.
43 Wang Y, Zhong K, Ke J, et al. Combined 4-1BB and ICOS co-stimulation improves anti-tumor efficacy and persistence of dual anti-CD19/CD20 chimeric antigen receptor T cells[J]. Cytotherapy, 2021, 23(8): 715-723. PMID: 33863641. DOI: 10.1016/j.jcyt.2021.02.117.
44 Safarzadeh Kozani P, Safarzadeh Kozani P, O'Connor RS. In like a lamb; out like a lion: marching CAR T cells toward enhanced efficacy in B-ALL[J]. Mol Cancer Ther, 2021, 20(7): 1223-1233. PMID: 33903140. PMCID: PMC8285067. DOI: 10.1158/1535-7163.MCT-20-1089.
45 Dai H, Wu Z, Jia H, et al. Bispecific CAR-T cells targeting both CD19 and CD22 for therapy of adults with relapsed or refractory B cell acute lymphoblastic leukemia[J]. J Hematol Oncol, 2020, 13(1): 30. PMID: 32245502. PMCID: PMC7126394. DOI: 10.1186/s13045-020-00856-8.
46 Wei G, Zhang Y, Zhao H, et al. CD19/CD22 dual-targeted CAR t-cell therapy for relapsed/refractory aggressive b-cell lymphoma: a safety and efficacy study[J]. Cancer Immunol Res, 2021, 9(9): 1061-1070. PMID: 34290048. DOI: 10.1158/2326-6066.CIR-20-0675.
47 Qin H, Edwards JP, Zaritskaya L, et al. Chimeric antigen receptors incorporating D domains targeting CD123 direct potent mono- and bi-specific antitumor activity of T cells[J]. Mol Ther, 2019, 27(7): 1262-1274. PMID: 31043341. PMCID: PMC6612629. DOI: 10.1016/j.ymthe.2019.04.010.
48 Zhang H, Hu Y, Shao M, et al. Dasatinib enhances anti-leukemia efficacy of chimeric antigen receptor T cells by inhibiting cell differentiation and exhaustion[J]. J Hematol Oncol, 2021, 14(1): 113. PMID: 34289897. PMCID: PMC8293573. DOI: 10.1186/s13045-021-01117-y.
49 Lee YG, Guruprasad P, Ghilardi G, et al. Modulation of BCL-2 in both T cells and tumor cells to enhance chimeric antigen receptor t-cell immunotherapy against cancer[J]. Cancer Discov, 2022, 12(10): 2372-2391. PMID: 35904479. PMCID: PMC9547936. DOI: 10.1158/2159-8290.CD-21-1026.

基金

安徽省自然科学基金资助项目(1608085QH218)。

PDF(558 KB)

Accesses

Citation

Detail

段落导航
相关文章

/