遗传相关儿童罕见病临床诊断技术现状、进展与思考

黄金月, 张碧丽, 刘薇

中国当代儿科杂志 ›› 2023, Vol. 25 ›› Issue (3) : 308-314.

PDF(594 KB)
PDF(594 KB)
中国当代儿科杂志 ›› 2023, Vol. 25 ›› Issue (3) : 308-314. DOI: 10.7499/j.issn.1008-8830.2211010
综述

遗传相关儿童罕见病临床诊断技术现状、进展与思考

  • 黄金月1, 张碧丽2, 刘薇3
作者信息 +

Clinical diagnostic techniques for rare genetic diseases in children: current status, advances, and thoughts

  • HUANG Jin-Yue1, ZHANG Bi-Li2, LIU Wei3
Author information +
文章历史 +

摘要

罕见病指一类发病率低、发病机制复杂、病情严重,进展迅速的单病种疾病。多数罕见病有遗传背景,在儿童期即可发病。关注遗传相关儿童罕见病,早期诊治,可有效延缓病程,改善患儿生存质量。得益于各类实验技术的惠及,很多罕见病得以确诊,但不容忽视的是罕见病的诊断仍缺乏广泛认识。该文总结遗传相关儿童罕见病目前的实验室诊断技术,以期为该类疾病的诊治提供线索,有助于遗传相关儿童罕见病的理论认识和精准医疗。

Abstract

Rare diseases refer to a group of single diseases with low incidence rates, complex pathogeneses, severe disease conditions, and rapid progression. Most rare diseases have a genetic background and may occur in childhood. Paying attention to the rare genetic diseases in children and performing early diagnosis and treatment can effectively delay the course of disease and improve the quality of life of children. Many rare diseases can be diagnosed with the help of various experimental techniques, but the diagnosis of rare diseases is still not widely understood. This article summarizes the laboratory diagnostic techniques currently used for rare genetic diseases in children, so as to provide clues for the diagnosis and treatment of such diseases and help to enhance the theoretical understanding and precise medical treatment of rare genetic diseases in children.

关键词

罕见病 / 遗传 / 诊断技术 / 儿童

Key words

Rare disease / Genetics / Diagnostic technique / Child

引用本文

导出引用
黄金月, 张碧丽, 刘薇. 遗传相关儿童罕见病临床诊断技术现状、进展与思考[J]. 中国当代儿科杂志. 2023, 25(3): 308-314 https://doi.org/10.7499/j.issn.1008-8830.2211010
HUANG Jin-Yue, ZHANG Bi-Li, LIU Wei. Clinical diagnostic techniques for rare genetic diseases in children: current status, advances, and thoughts[J]. Chinese Journal of Contemporary Pediatrics. 2023, 25(3): 308-314 https://doi.org/10.7499/j.issn.1008-8830.2211010

参考文献

1 The Ryan Foundation. Facts about rare diseases[EB/OL]. (2017-09-05)[2022-01-06]. https://ryanfoundation.org/home.
2 Wright CF, FitzPatrick DR, Firth HV. Paediatric genomics: diagnosing rare disease in children[J]. Nat Rev Genet, 2018, 19(5): 253-268. PMID: 29398702. DOI: 10.1038/nrg.2017.116.
3 张抒扬, 赵玉沛, 黄尚志, 等. 罕见病学[M]. 北京: 人民卫生出版社, 2020: 2-6.
4 Blin O, Lefebvre MN, Rascol O, et al. Orphan drug clinical development[J]. Therapie, 2020, 75(2): 141-147. PMID: 32247678. DOI: 10.1016/j.therap.2020.02.004.
5 何山, 高仕奇, 何欣悦, 等. 中国罕见病领域新进展(2020—2021)[J]. 协和医学杂志, 2022, 13(1): 39-45. DOI: 10.12290/xhyxzz.2021-0248.
6 国家卫生健康委官网. 国家卫健委: 完成我国首部罕见病诊疗指南发布[J]. 中华医学信息导报, 2019, 34(5): 7.
7 彭镜. 儿童神经遗传罕见病进入疾病修正治疗时代[J]. 中华儿科杂志, 2022, 60(11): 1097-1099. PMID: 36319139. DOI: 10.3760/cma.j.cn112140-20220919-00815.
8 Abrams ZB, Zhang L, Abruzzo LV, et al. CytoGPS: a web-enabled karyotype analysis tool for cytogenetics[J]. Bioinformatics, 2019, 35(24): 5365-5366. PMID: 31263896. PMCID: PMC6954647. DOI: 10.1093/bioinformatics/btz520.
9 荧光原位杂交技术在产前诊断中的应用协作组. 荧光原位杂交技术在产前诊断中应用的专家共识[J]. 中华妇产科杂志, 2016, 51(4): 241-244. PMID: 27116980. DOI: 10.3760/cma.j.issn.0529-567x.2016.04.001.
10 染色体微阵列分析技术在产前诊断中的应用协作组. 染色体微阵列分析技术在产前诊断中的应用专家共识[J]. 中华妇产科杂志, 2014, 49(8): 570-572. PMID: 25354854. DOI: 10.3760/cma.j.issn.0529-567x.2014.08.002.
11 Zhang C, Cerveira E, Romanovitch M, et al. Array-based comparative genomic hybridization (aCGH)[J]. Methods Mol Biol, 2017, 1541: 167-179. PMID: 27910023. DOI: 10.1007/978-1-4939-6703-2_15.
12 Seo JS, Rhie A, Kim J, et al. De novo assembly and phasing of a Korean human genome[J]. Nature, 2016, 538(7624): 243-247. PMID: 27706134. DOI: 10.1038/nature20098.
13 Telias M. Molecular mechanisms of synaptic dysregulation in fragile X syndrome and autism spectrum disorders[J]. Front Mol Neurosci, 2019, 12: 51. PMID: 30899214. PMCID: PMC6417395. DOI: 10.3389/fnmol.2019.00051.
14 Ghosh R, Tabrizi SJ. Clinical features of Huntington's disease[J]. Adv Exp Med Biol, 2018, 1049: 1-28. PMID: 29427096. DOI: 10.1007/978-3-319-71779-1_1.
15 Middleton PG, Mall MA, D?evínek P, et al. Elexacaftor-tezacaftor-ivacaftor for cystic fibrosis with a single Phe508del allele[J]. N Engl J Med, 2019, 381(19): 1809-1819. PMID: 31697873. PMCID: PMC7282384. DOI: 10.1056/NEJMoa1908639.
16 中华医学会医学遗传学分会临床遗传学组, 中国医师协会医学遗传医师分会遗传病产前诊断专业委员会, 中华预防医学会出生缺陷预防与控制专业委员会遗传病防控学组. 低深度全基因组测序技术在产前诊断中的应用专家共识[J]. 中华医学遗传学杂志, 2019, 36(4): 293-296. PMID: 30950010. DOI: 10.3760/cma.j.issn.1003-9406.2019.04.001.
17 Miao H, Zhou J, Yang Q, et al. Long-read sequencing identified a causal structural variant in an exome-negative case and enabled preimplantation genetic diagnosis[J]. Hereditas, 2018, 155: 32. PMID: 30279644. PMCID: PMC6162922. DOI: 10.1186/s41065-018-0069-1.
18 柳延虎, 王璐, 于黎. 单分子实时测序技术的原理与应用[J]. 遗传, 2015, 37(3): 259-268. PMID: 25787000. DOI: 10.16288/j.yczz.14-323.
19 Kamilaris CDC, Faucz FR, Voutetakis A, et al. Carney complex[J]. Exp Clin Endocrinol Diabetes, 2019, 127(2-03): 156-164. PMID: 30428497. DOI: 10.1055/a-0753-4943.
20 Suzuki Y, Wang Y, Au KF, et al. A statistical method for observing personal diploid methylomes and transcriptomes with single-molecule real-time sequencing[J]. Genes (Basel), 2018, 9(9): 460. PMID: 30235838. PMCID: PMC6162384. DOI: 10.3390/genes9090460.
21 Nowak A, Murik O, Mann T, et al. Detection of single nucleotide and copy number variants in the Fabry disease-associated GLA gene using nanopore sequencing[J]. Sci Rep, 2021, 11(1): 22372. PMID: 34785703. PMCID: PMC8595663. DOI: 10.1038/s41598-021-01749-7.
22 Schouten J, van Vught P, Galjaard RJ. Multiplex ligation-dependent probe amplification (MLPA) for prenatal diagnosis of common aneuploidies[J]. Methods Mol Biol, 2019, 1885: 161-170. PMID: 30506197. DOI: 10.1007/978-1-4939-8889-1_11.
23 Duan D, Goemans N, Takeda S, et al. Duchenne muscular dystrophy[J]. Nat Rev Dis Primers, 2021, 7(1): 13. PMID: 33602943. DOI: 10.1038/s41572-021-00248-3.
24 Markati T, Duis J, Servais L. Therapies in preclinical and clinical development for Angelman syndrome[J]. Expert Opin Investig Drugs, 2021, 30(7): 709-720. PMID: 34112038. DOI: 10.1080/13543784.2021.1939674.
25 Moelans CB, Atanesyan L, Savola SP, et al. Methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA)[J]. Methods Mol Biol, 2018, 1708: 537-549. PMID: 29224162. DOI: 10.1007/978-1-4939-7481-8_27.
26 蒋敏, 李慧莉, 庞盼盼, 等. 高通量单细胞转录组测序发展与展望[J]. 生命科学, 2020, 32(12): 1280-1287. DOI: 10.13376/j.cbls/2020152.
27 DeLaughter DM, Bick AG, Wakimoto H, et al. Single-cell resolution of temporal gene expression during heart development[J]. Dev Cell, 2016, 39(4): 480-490. PMID: 27840107. PMCID: PMC5198784. DOI: 10.1016/j.devcel.2016.10.001.
28 宋正阳, 蒋春明. 多组学技术在单基因遗传病临床诊断中的应用展望[J]. 浙江医学, 2022, 44(4): 427-431. DOI: 10.12056/j.issn.1006-2785.2022.44.4.2021-3286.
29 中华医学会血液学分会红细胞学组. 重组人促红细胞生成素治疗骨髓衰竭性疾病贫血专家共识[J]. 中华医学杂志, 2018, 98(42): 3396-3400. DOI: 10.3760/cma.j.issn.0376-2491.2018.42.004.
30 陆相朋, 张婧韬, 梁瑞星, 等. 丙酮酸脱氢酶复合物缺陷Leigh综合征2例临床及PDHA1基因分析[J]. 临床儿科杂志, 2019, 37(3): 218-222. DOI: 10.3969/j.issn.1000-3606.2019.03.015.
31 Bujak R, Struck-Lewicka W, Markuszewski MJ, et al. Metabolomics for laboratory diagnostics[J]. J Pharm Biomed Anal, 2015, 113: 108-120. PMID: 25577715. DOI: 10.1016/j.jpba.2014.12.017.
32 Almannai M, Alfadhel M, El-Hattab AW. Carnitine inborn errors of metabolism[J]. Molecules, 2019, 24(18): 3251. PMID: 31500110. PMCID: PMC6766900. DOI: 10.3390/molecules24183251.
33 中华医学会儿科学分会内分泌遗传代谢学组, 中华医学会医学遗传学分会, 中华医学会儿科学分会罕见病学组, 等. 儿童糖原累积病Ⅱ型诊断及治疗中国专家共识[J]. 中华儿科杂志, 2021, 59(6): 439-445. PMID: 34102815. DOI: 10.3760/cma.j.cn112140-20201210-01094.
34 中华医学会肝病学分会遗传代谢性肝病协作组. 肝豆状核变性诊疗指南(2022年版)[J]. 中华肝脏病杂志, 2022, 30(1): 9-20. PMID: 35152665. DOI: 10.3760/cma.j.cn501113-20211217-00603.
35 刘薇, 张碧丽, 黄金月. 儿童罕见病管理现状、进展与前景[J]. 罕见病研究, 2022, 1(1): 20-27. DOI: 10.12376/j.issn.2097-0501.2022.01.004.

基金

天津市卫生健康委员会科技项目(ZC20123)。

PDF(594 KB)

Accesses

Citation

Detail

段落导航
相关文章

/