血小板-白细胞聚集体及其在川崎病发病中的研究进展

高立超, 龚方戚

中国当代儿科杂志 ›› 2023, Vol. 25 ›› Issue (6) : 587-594.

PDF(714 KB)
HTML
PDF(714 KB)
HTML
中国当代儿科杂志 ›› 2023, Vol. 25 ›› Issue (6) : 587-594. DOI: 10.7499/j.issn.1008-8830.2302066
川崎病专栏

血小板-白细胞聚集体及其在川崎病发病中的研究进展

  • 高立超, 龚方戚
作者信息 +

Recent research on platelet-leukocyte aggregates and their role in the pathogenesis of Kawasaki disease

  • GAO Li-Chao, GONG Fang-Qi
Author information +
文章历史 +

摘要

活化的血小板会与单核细胞、中性粒细胞、树突状细胞和淋巴细胞等各类白细胞相互作用,触发细胞间信号转导,从而导致血栓形成和炎症介质的大量合成。已在多种血栓性疾病和炎症性疾病中发现血液中血小板-白细胞聚集体水平升高,该文综述了最新文献,探讨血小板-白细胞聚集体形成机制、作用、检测方法及其在川崎病发病中的相关作用,为川崎病发病机制的研究提供了新思路。

Abstract

Activated platelets may interact with various types of leukocytes such as monocytes, neutrophils, dendritic cells, and lymphocytes, trigger intercellular signal transduction, and thus lead to thrombosis and synthesis of massive inflammatory mediators. Elevated levels of circulating platelet-leukocyte aggregates have been found in patients with thrombotic or inflammatory diseases. This article reviews the latest research on the formation, function, and detection methods of platelet-leukocyte aggregates and their role in the onset of Kawasaki disease, so as to provide new ideas for studying the pathogenesis of Kawasaki disease.

关键词

川崎病 / 血小板-白细胞聚集体 / 抗血小板药物 / 冠状动脉扩张

Key words

Kawasaki disease / Platelet-leukocyte aggregate / Antiplatelet agent / Coronary artery ectasia

引用本文

导出引用
高立超, 龚方戚. 血小板-白细胞聚集体及其在川崎病发病中的研究进展[J]. 中国当代儿科杂志. 2023, 25(6): 587-594 https://doi.org/10.7499/j.issn.1008-8830.2302066
GAO Li-Chao, GONG Fang-Qi. Recent research on platelet-leukocyte aggregates and their role in the pathogenesis of Kawasaki disease[J]. Chinese Journal of Contemporary Pediatrics. 2023, 25(6): 587-594 https://doi.org/10.7499/j.issn.1008-8830.2302066

参考文献

1 Mandel J, Casari M, Stepanyan M, et al. Beyond hemostasis: platelet innate immune interactions and thromboinflammation[J]. Int J Mol Sci, 2022, 23(7): 3868. PMID: 35409226. PMCID: PMC8998935. DOI: 10.3390/ijms23073868.
2 Neubauer K, Zieger B. Endothelial cells and coagulation[J]. Cell Tissue Res, 2022, 387(3): 391-398. PMID: 34014399. PMCID: PMC8975780. DOI: 10.1007/s00441-021-03471-2.
3 Semple JW, Italiano JE, Freedman J. Platelets and the immune continuum[J]. Nat Rev Immunol, 2011, 11(4): 264-274. PMID: 21436837. DOI: 10.1038/nri2956.
4 Hottz ED, Quirino-Teixeira AC, Merij LB, et al. Platelet-leukocyte interactions in the pathogenesis of viral infections[J]. Platelets, 2022, 33(2): 200-207. PMID: 34260328. DOI: 10.1080/09537104.2021.1952179.
5 Schrottmaier WC, Mussbacher M, Salzmann M, et al. Platelet-leukocyte interplay during vascular disease[J]. Atherosclerosis, 2020, 307: 109-120. PMID: 32439204. DOI: 10.1016/j.atherosclerosis.2020.04.018.
6 Rayes J, Bourne JH, Brill A, et al. The dual role of platelet-innate immune cell interactions in thrombo-inflammation[J]. Res Pract Thromb Haemost, 2020, 4(1): 23-35. PMID: 31989082. PMCID: PMC6971330. DOI: 10.1002/rth2.12266.
7 Finsterbusch M, Schrottmaier WC, Kral-Pointner JB, et al. Measuring and interpreting platelet-leukocyte aggregates[J]. Platelets, 2018, 29(7): 677-685. PMID: 29461910. PMCID: PMC6178087. DOI: 10.1080/09537104.2018.1430358.
8 Schanze N, Hamad MA, Nührenberg TG, et al. Platelets in myocardial ischemia/reperfusion injury[J]. Hamostaseologie, 2023, 43(2): 110-121. PMID: 35913081. PMC10132858. DOI: 10.1055/a-1739-9351.
9 Wong DJ, Park DD, Park SS, et al. A PSGL-1 glycomimetic reduces thrombus burden without affecting hemostasis[J]. Blood, 2021, 138(13): 1182-1193. PMID: 33945603. PMCID: PMC8570056. DOI: 10.1182/blood.2020009428.
10 Cognasse F, Laradi S, Berthelot P, et al. Platelet inflammatory response to stress[J]. Front Immunol, 2019, 10: 1478. PMID: 31316518. PMCID: PMC6611140. DOI: 10.3389/fimmu.2019.01478.
11 Ju LA, Kossmann S, Zhao YC, et al. Microfluidic post method for 3-dimensional modeling of platelet-leukocyte interactions[J]. Analyst, 2022, 147(6): 1222-1235. PMID: 35212697. DOI: 10.1039/d2an00270a.
12 Dziedzic A, Bijak M. Interactions between platelets and leukocytes in pathogenesis of multiple sclerosis[J]. Adv Clin Exp Med, 2019, 28(2): 277-285. PMID: 30411550. DOI: 10.17219/acem/83588.
13 梁爽. 单核细胞血小板聚集体的研究进展[J]. 临床与病理杂志, 2021, 41(7): 1674-1678. DOI: 10.3978/j.issn.2095-6959.2021.07.033.
14 Marín Oyarzún CP, Glembotsky AC, Goette NP, et al. Platelet toll-like receptors mediate thromboinflammatory responses in patients with essential thrombocythemia[J]. Front Immunol, 2020, 11: 705. PMID: 32425934. PMCID: PMC7203216. DOI: 10.3389/fimmu.2020.00705.
15 Schrottmaier WC, Kral-Pointner JB, Salzmann M, et al. Platelet p110β mediates platelet-leukocyte interaction and curtails bacterial dissemination in pneumococcal pneumonia[J]. Cell Rep, 2022, 41(6): 111614. PMID: 36351402. DOI: 10.1016/j.celrep.2022.111614.
16 Perrella G, Nagy M, Watson SP, et al. Platelet GPVI (glycoprotein VI) and thrombotic complications in the venous system[J]. Arterioscler Thromb Vasc Biol, 2021, 41(11): 2681-2692. PMID: 34496636. PMCID: PMC9653110. DOI: 10.1161/ATVBAHA.121.316108.
17 Palabrica T, Lobb R, Furie BC, et al. Leukocyte accumulation promoting fibrin deposition is mediated in vivo by P-selectin on adherent platelets[J]. Nature, 1992, 359(6398): 848-851. PMID: 1279433. DOI: 10.1038/359848a0.
18 Rossaint J, Margraf A, Zarbock A. Role of platelets in leukocyte recruitment and resolution of inflammation[J]. Front Immunol, 2018, 9: 2712. PMID: 30515177. PMCID: PMC6255980. DOI: 10.3389/fimmu.2018.02712.
19 Finsterbusch M, Norman MU, Hall P, et al. Platelet retention in inflamed glomeruli occurs via selective prolongation of interactions with immune cells[J]. Kidney Int, 2019, 95(2): 363-374. PMID: 30522769. DOI: 10.1016/j.kint.2018.08.042.
20 Sung PS, Huang TF, Hsieh SL. Extracellular vesicles from CLEC2-activated platelets enhance dengue virus-induced lethality via CLEC5A/TLR2[J]. Nat Commun, 2019, 10(1): 2402. PMID: 31160588. PMCID: PMC6546763. DOI: 10.1038/s41467-019-10360-4.
21 Trotta A, Milillo MA, Serafino A, et al. Brucella abortus—infected platelets modulate the activation of neutrophils[J]. Immunol Cell Biol, 2020, 98(9): 743-756. PMID: 32623755. DOI: 10.1111/imcb.12373.
22 Kullaya V, van der Ven A, Mpagama S, et al. Platelet-monocyte interaction in Mycobacterium tuberculosis infection[J]. Tuberculosis (Edinb), 2018, 111: 86-93. PMID: 30029921. DOI: 10.1016/j.tube.2018.05.002.
23 Petzold T, Zhang Z, Ballesteros I, et al. Neutrophil "plucking" on megakaryocytes drives platelet production and boosts cardiovascular disease[J]. Immunity, 2022, 55(12): 2285-2299.e7. PMID: 36272416. PMCID: PMC9767676. DOI: 10.1016/j.immuni.2022.10.001.
24 Hall LS, Lennon CS, Hall AM, et al. Combination peptide immunotherapy suppresses antibody and helper T-cell responses to the major human platelet autoantigen glycoprotein IIb/IIIa in HLA-transgenic mice[J]. Haematologica, 2019, 104(5): 1074-1082. PMID: 30514805. PMCID: PMC6518892. DOI: 10.3324/haematol.2017.179424.
25 Chao Y, Rebetz J, Bl?ckberg A, et al. Distinct phenotypes of platelet, monocyte, and neutrophil activation occur during the acute and convalescent phase of COVID-19[J]. Platelets, 2021, 32(8): 1092-1102. PMID: 33999778. PMCID: PMC8146300. DOI: 10.1080/09537104.2021.1921721.
26 Ludwig N, Hilger A, Zarbock A, et al. Platelets at the crossroads of pro-inflammatory and resolution pathways during inflammation[J]. Cells, 2022, 11(12): 1957. PMID: 35741086. PMCID: PMC9221767. DOI: 10.3390/cells11121957.
27 Margraf A, Zarbock A. Platelets in inflammation and resolution[J]. J Immunol, 2019, 203(9): 2357-2367. PMID: 31636134. DOI: 10.4049/jimmunol.1900899.
28 Linke B, Schreiber Y, Picard-Willems B, et al. Activated platelets induce an anti-inflammatory response of monocytes/macrophages through cross-regulation of PGE2 and cytokines[J]. Mediators Inflamm, 2017, 2017: 1463216. PMID: 28592915. PMCID: PMC5448075. DOI: 10.1155/2017/1463216.
29 Schrottmaier WC, Kral JB, Badrnya S, et al. Aspirin and P2Y12 inhibitors in platelet-mediated activation of neutrophils and monocytes[J]. Thromb Haemost, 2015, 114(3): 478-489. PMID: 25904241. DOI: 10.1160/TH14-11-0943.
30 Mansour A, Roussel M, Gaussem P, et al. Platelet functions during extracorporeal membrane oxygenation. Platelet-leukocyte aggregates analyzed by flow cytometry as a promising tool to monitor platelet activation[J]. J Clin Med, 2020, 9(8): 2361. PMID: 32718096. PMCID: PMC7464627. DOI: 10.3390/jcm9082361.
31 Stoiber D, Assinger A. Platelet-leukocyte interplay in cancer development and progression[J]. Cells, 2020, 9(4): 855. PMID: 32244723. PMCID: PMC7226828. DOI: 10.3390/cells9040855.
32 Hally K, Fauteux-Daniel S, Hamzeh-Cognasse H, et al. Revisiting platelets and toll-like receptors (TLRs): at the interface of vascular immunity and thrombosis[J]. Int J Mol Sci, 2020, 21(17): 6150. PMID: 32858930. PMCID: PMC7504402. DOI: 10.3390/ijms21176150.
33 Cleary SJ, Hobbs C, Amison RT, et al. LPS-induced lung platelet recruitment occurs independently from neutrophils, PSGL-1, and P-selectin[J]. Am J Respir Cell Mol Biol, 2019, 61(2): 232-243. PMID: 30768917. PMCID: PMC6670039. DOI: 10.1165/rcmb.2018-0182OC.
34 Kral JB, Schrottmaier WC, Salzmann M, et al. Platelet interaction with innate immune cells[J]. Transfus Med Hemother, 2016, 43(2): 78-88. PMID: 27226790. PMCID: PMC4872052. DOI: 10.1159/000444807.
35 Hottz ED, Martins-Gon?alves R, Palhinha L, et al. Platelet-monocyte interaction amplifies thromboinflammation through tissue factor signaling in COVID-19[J]. Blood Adv, 2022, 6(17): 5085-5099. PMID: 35420680. PMCID: PMC9015715. DOI: 10.1182/bloodadvances.2021006680.
36 Rossaint J, Thomas K, Mersmann S, et al. Platelets orchestrate the resolution of pulmonary inflammation in mice by T reg cell repositioning and macrophage education[J]. J Exp Med, 2021, 218(7): e20201353. PMID: 34014253. PMCID: PMC8142284. DOI: 10.1084/jem.20201353.
37 Karnell JL, Rieder SA, Ettinger R, et al. Targeting the CD40-CD40L pathway in autoimmune diseases: humoral immunity and beyond[J]. Adv Drug Deliv Rev, 2019, 141: 92-103. PMID: 30552917. DOI: 10.1016/j.addr.2018.12.005.
38 Han P, Hanlon D, Arshad N, et al. Platelet P-selectin initiates cross-presentation and dendritic cell differentiation in blood monocytes[J]. Sci Adv, 2020, 6(11): eaaz1580. PMID: 32195350. PMCID: PMC7065880. DOI: 10.1126/sciadv.aaz1580.
39 Saris A, Steuten J, Schrijver DP, et al. Inhibition of dendritic cell activation and modulation of T cell polarization by the platelet secretome[J]. Front Immunol, 2021, 12: 631285. PMID: 33737933. PMCID: PMC7961920. DOI: 10.3389/fimmu.2021.631285.
40 Yaw HP, Van Den Helm S, Linden M, et al. Whole blood flow cytometry protocol for the assessment of platelet phenotype, function, and cellular interactions[J]. Platelets, 2021, 32(6): 786-793. PMID: 32881599. DOI: 10.1080/09537104.2020.1810222.
41 Chaurasia SN, Ekhlak M, Kushwaha G, et al. Notch signaling functions in noncanonical juxtacrine manner in platelets to amplify thrombogenicity[J]. Elife, 2022, 11: e79590. PMID: 36190110. PMCID: PMC9629830. DOI: 10.7554/eLife.79590.
42 Finsterbusch M, Kitching AR, Hickey MJ. Imaging leukocyte responses in the kidney[J]. Transplantation, 2017, 101(3): 506-516. PMID: 28198769. DOI: 10.1097/TP.0000000000001557.
43 Sreeramkumar V, Adrover JM, Ballesteros I, et al. Neutrophils scan for activated platelets to initiate inflammation[J]. Science, 2014, 346(6214): 1234-1238. PMID: 25477463. PMCID: PMC4280847. DOI: 10.1126/science.1256478.
44 Frydman GH, Le A, Ellett F, et al. Technical advance: changes in neutrophil migration patterns upon contact with platelets in a microfluidic assay[J]. J Leukoc Biol, 2017, 101(3): 797-806. PMID: 27630219. PMCID: PMC5295852. DOI: 10.1189/jlb.1TA1115-517RR.
45 Mwiza JMN, Lee RH, Paul DS, et al. Both G protein-coupled and immunoreceptor tyrosine-based activation motif receptors mediate venous thrombosis in mice[J]. Blood, 2022, 139(21): 3194-3203. PMID: 35358299. PMCID: PMC9136879. DOI: 10.1182/blood.2022015787.
46 Corken A, Ware J, Dai J, et al. Platelet-dependent inflammatory dysregulation in patients with stages 4 or 5 chronic kidney disease: a mechanistic clinical study[J]. Kidney360, 2022, 3(12): 2036-2047. PMID: 36591354. PMCID: PMC9802560. DOI: 10.34067/KID.0005532022.
47 Dai Y, Xu R, Wu G, et al. Aspirin suppresses hepatic glucagon signaling through decreasing production of thromboxane A2[J]. Endocrinology, 2023, 164(3): bqac217. PMID: 36592127. DOI: 10.1210/endocr/bqac217.
48 Mitchell JA, Kirkby NS, Ahmetaj-Shala B, et al. Cyclooxygenases and the cardiovascular system[J]. Pharmacol Ther, 2021, 217: 107624. PMID: 32640277. DOI: 10.1016/j.pharmthera.2020.107624.
49 Mirabito Colafella KM, Neuman RI, Visser W, et al. Aspirin for the prevention and treatment of pre-eclampsia: a matter of COX-1 and/or COX-2 inhibition?[J]. Basic Clin Pharmacol Toxicol, 2020, 127(2): 132-141. PMID: 31420920. PMCID: PMC7496715. DOI: 10.1111/bcpt.13308.
50 Chen CM, Lu HC, Tung YT, et al. Antiplatelet therapy for acute respiratory distress syndrome[J]. Biomedicines, 2020, 8(7): 230. PMID: 32708068. PMCID: PMC7399831. DOI: 10.3390/biomedicines8070230.
51 Zhong H, Waresi M, Zhang W, et al. NOD2-mediated P2Y12 upregulation increases platelet activation and thrombosis in sepsis[J]. Biochem Pharmacol, 2021, 194: 114822. PMID: 34748820. DOI: 10.1016/j.bcp.2021.114822.
52 Wang XL, Deng HF, Li T, et al. Clopidogrel reduces lipopolysaccharide-induced inflammation and neutrophil-platelet aggregates in an experimental endotoxemic model[J]. J Biochem Mol Toxicol, 2019, 33(4): e22279. PMID: 30537341. DOI: 10.1002/jbt.22279.
53 Klinkhardt U, Bauersachs R, Adams J, et al. Clopidogrel but not aspirin reduces P-selectin expression and formation of platelet-leukocyte aggregates in patients with atherosclerotic vascular disease[J]. Clin Pharmacol Ther, 2003, 73(3): 232-241. PMID: 12621388. DOI: 10.1067/mcp.2003.13.
54 Rudolph TK, Fuchs A, Klinke A, et al. Prasugrel as opposed to clopidogrel improves endothelial nitric oxide bioavailability and reduces platelet-leukocyte interaction in patients with unstable angina pectoris: a randomized controlled trial[J]. Int J Cardiol, 2017, 248: 7-13. PMID: 28709700. DOI: 10.1016/j.ijcard.2017.06.099.
55 Sanderson NC, Parker WAE, Storey RF. Ticagrelor: clinical development and future potential[J]. Rev Cardiovasc Med, 2021, 22(2): 373-394. PMID: 34258905. DOI: 10.31083/j.rcm2202044.
56 Sexton TR, Zhang G, Macaulay TE, et al. Ticagrelor reduces thromboinflammatory markers in patients with pneumonia[J]. JACC Basic Transl Sci, 2018, 3(4): 435-449. PMID: 30175268. PMCID: PMC6115703. DOI: 10.1016/j.jacbts.2018.05.005.
57 Arora K, Guleria S, Jindal AK, et al. Platelets in Kawasaki disease: is this only a numbers game or something beyond?[J]. Genes Dis, 2020, 7(1): 62-66. PMID: 32181276. PMCID: PMC7063415. DOI: 10.1016/j.gendis.2019.09.003.
58 Straface E, Gambardella L, Metere A, et al. Oxidative stress and defective platelet apoptosis in na?ve patients with Kawasaki disease[J]. Biochem Biophys Res Commun, 2010, 392(3): 426-430. PMID: 20079717. DOI: 10.1016/j.bbrc.2010.01.040.
59 Ueno K, Nomura Y, Morita Y, et al. Circulating platelet-neutrophil aggregates play a significant role in Kawasaki disease[J]. Circ J, 2015, 79(6): 1349-1356. PMID: 25787672. DOI: 10.1253/circj.CJ-14-1323.
60 Vignesh P, Rawat A, Shandilya JK, et al. Monocyte platelet aggregates in children with Kawasaki disease: a preliminary study from a tertiary care centre in North-West India[J]. Pediatr Rheumatol Online J, 2021, 19(1): 25. PMID: 33712020. PMCID: PMC7953550. DOI: 10.1186/s12969-021-00515-3.
61 Terai M, Shulman ST. Prevalence of coronary artery abnormalities in Kawasaki disease is highly dependent on gamma globulin dose but independent of salicylate dose[J]. J Pediatr, 1997, 131(6): 888-893. PMID: 9427895. DOI: 10.1016/s0022-3476(97)70038-6.
62 Sanati F, Bagheri M, Eslami S, et al. Evaluation of high-dose aspirin elimination in the treatment of Kawasaki disease in the incidence of coronary artery aneurysm[J]. Ann Pediatr Cardiol, 2021, 14(2): 146-151. PMID: 34103852. PMCID: PMC8174624. DOI: 10.4103/apc.APC_206_20.
63 Chiang MH, Liu HE, Wang JL. Low-dose or no aspirin administration in acute-phase Kawasaki disease: a meta-analysis and systematic review[J]. Arch Dis Child, 2021, 106(7): 662-668. PMID: 33172886. DOI: 10.1136/archdischild-2019-318245.
64 柳颐龄, 王献民, 陈婷婷, 等. 氯吡格雷联合阿司匹林对川崎病并发中小型冠状动脉瘤患儿抗血栓治疗的疗效及安全性研究[J]. 中国当代儿科杂志, 2019, 21(8): 801-805. PMID: 31416506. PMCID: PMC7389908. DOI: 10.7499/j.issn.1008-8830.2019.08.012.
65 Low T, Jegatheeswaran A, Devlin PJ, et al. Bleeding risk associated with combination thromboprophylaxis therapy is low for patients with coronary artery aneurysms after Kawasaki disease[J]. Int J Cardiol, 2020, 321: 6-11. PMID: 32697954. DOI: 10.1016/j.ijcard.2020.07.022.
66 Zhang C, Chen L, Chen S, et al. Predictive role of IL-2R and IL-10 in the anti-inflammatory response and antiplatelet therapy of Kawasaki disease: a retrospective study[J]. Mediators Inflamm, 2022, 2022: 4917550. PMID: 35153622. PMCID: PMC8831045. DOI: 10.1155/2022/4917550.
67 Zhang M, Meng L, Chen Y, et al. CYP2C19 polymorphisms and lipoproteins associated with clopidogrel resistance in children with Kawasaki disease in China: a prospective study[J]. Front Cardiovasc Med, 2022, 9: 925518. PMID: 36072880. PMCID: PMC9441694. DOI: 10.3389/fcvm.2022.925518.

基金

国家自然科学基金面上项目(81970434)。

PDF(714 KB)
HTML

Accesses

Citation

Detail

段落导航
相关文章

/