循环肿瘤DNA作为实体肿瘤微小残留病标志物的研究进展

陈颖, 文飞球

中国当代儿科杂志 ›› 2023, Vol. 25 ›› Issue (10) : 1072-1077.

PDF(502 KB)
HTML
PDF(502 KB)
HTML
中国当代儿科杂志 ›› 2023, Vol. 25 ›› Issue (10) : 1072-1077. DOI: 10.7499/j.issn.1008-8830.2304040
综述

循环肿瘤DNA作为实体肿瘤微小残留病标志物的研究进展

  • 陈颖1, 文飞球2
作者信息 +

Research progress on circulating tumor DNA as a biomarker for minimal residual disease in solid tumors

  • CHEN Ying, WEN Fei-Qiu
Author information +
文章历史 +

摘要

循环肿瘤DNA(circulating tumor DNA, ctDNA)作为评估肿瘤的新标志物,具有高灵敏度和特异度、创伤小且无放射性等优点,目前有基因测序及聚合酶链式反应等多种检测ctDNA的方法。利用ctDNA监测微小残留病(minimal residual disease, MRD),可纵向评估肿瘤情况及早期发现肿瘤复发,其灵敏度达0.01%。因此ctDNA有望成为对实体肿瘤的早期诊断、监测治疗反应和预测预后的生物标志物。该文综述了目前检测ctDNA的常用方法及其在评估肿瘤MRD和指导临床诊疗上的优势。

Abstract

Circulating tumor DNA (ctDNA) is emerging as a novel biomarker for tumor evaluation, offering advantages such as high sensitivity and specificity, minimal invasiveness, and absence of radiation. Currently, various techniques including gene sequencing and PCR are employed for ctDNA detection. The utilization of ctDNA for monitoring minimal residual disease (MRD) enables comprehensive assessment of tumor status and early identification of tumor recurrence, achieving a remarkable detection sensitivity of 0.01%. Therefore, ctDNA holds promise as a biomarker for early diagnosis, treatment response monitoring, and prognosis prediction in solid tumors. This article reviews the commonly used methods for detecting ctDNA and their advantages in evaluating tumor MRD and guiding clinical diagnosis and treatment.

关键词

实体肿瘤 / 循环肿瘤DNA / 微小残留病

Key words

Solid tumor / Circulating tumor DNA / Minimal residual disease

引用本文

导出引用
陈颖, 文飞球. 循环肿瘤DNA作为实体肿瘤微小残留病标志物的研究进展[J]. 中国当代儿科杂志. 2023, 25(10): 1072-1077 https://doi.org/10.7499/j.issn.1008-8830.2304040
CHEN Ying, WEN Fei-Qiu. Research progress on circulating tumor DNA as a biomarker for minimal residual disease in solid tumors[J]. Chinese Journal of Contemporary Pediatrics. 2023, 25(10): 1072-1077 https://doi.org/10.7499/j.issn.1008-8830.2304040

参考文献

1 Siegel RL, Miller KD, Fuchs HE, et al. Cancer statistics, 2022[J]. CA Cancer J Clin, 2022, 72(1): 7-33. PMID: 35020204. DOI: 10.3322/caac.21708.
2 Seidel MG, Kashofer K, Moser T, et al. Clinical implementation of plasma cell-free circulating tumor DNA quantification by digital droplet PCR for the monitoring of Ewing sarcoma in children and adolescents[J]. Front Pediatr, 2022, 10: 926405. PMID: 36046479. PMCID: PMC9420963. DOI: 10.3389/fped.2022.926405.
3 Zhou L, Zhao H, Shao Y, et al. Serial surveillance by circulating tumor DNA profiling after chimeric antigen receptor T therapy for the guidance of r/r diffuse large B cell lymphoma precise treatment[J]. J Cancer, 2021, 12(18): 5423-5431. PMID: 34405005. PMCID: PMC8364638. DOI: 10.7150/jca.60390.
4 Marsavela G, McEvoy AC, Pereira MR, et al. Detection of clinical progression through plasma ctDNA in metastatic melanoma patients: a comparison to radiological progression[J]. Br J Cancer, 2022, 126(3): 401-408. PMID: 34373567. PMCID: PMC8810871. DOI: 10.1038/s41416-021-01507-6.
5 Waldeck S, Mitschke J, Wiesemann S, et al. Early assessment of circulating tumor DNA after curative-intent resection predicts tumor recurrence in early-stage and locally advanced non-small-cell lung cancer[J]. Mol Oncol, 2022, 16(2): 527-537. PMID: 34653314. PMCID: PMC8763652. DOI: 10.1002/1878-0261.13116.
6 Chen L, Mu W, Gu J, et al. TP53-Mutated circulating tumor DNA for disease monitoring in lymphoma patients after CAR T cell therapy[J]. Diagnostics (Basel), 2021, 11(5): 844. PMID: 34066756. PMCID: PMC8151854. DOI: 10.3390/diagnostics11050844.
7 Ruhen O, Lak NSM, Stutterheim J, et al. Molecular characterization of circulating tumor DNA in pediatric rhabdomyosarcoma: a feasibility study[J]. JCO Precis Oncol, 2022, 6: e2100534. PMID: 36265118. PMCID: PMC9616639. DOI: 10.1200/PO.21.00534.
8 Yang J, Gong Y, Lam VK, et al. Deep sequencing of circulating tumor DNA detects molecular residual disease and predicts recurrence in gastric cancer[J]. Cell Death Dis, 2020, 11(5): 346. PMID: 32393783. PMCID: PMC7214415. DOI: 10.1038/s41419-020-2531-z.
9 Kim ST, Cristescu R, Bass AJ, et al. Comprehensive molecular characterization of clinical responses to PD-1 inhibition in metastatic gastric cancer[J]. Nat Med, 2018, 24(9): 1449-1458. PMID: 30013197. DOI: 10.1038/s41591-018-0101-z.
10 Chabon JJ, Hamilton EG, Kurtz DM, et al. Integrating genomic features for non-invasive early lung cancer detection[J]. Nature, 2020, 580(7802): 245-251. PMID: 32269342. PMCID: PMC8230734. DOI: 10.1038/s41586-020-2140-0.
11 Wang DS, Yang H, Liu XY, et al. Dynamic monitoring of circulating tumor DNA to predict prognosis and efficacy of adjuvant chemotherapy after resection of colorectal liver metastases[J]. Theranostics, 2021, 11(14): 7018-7028. PMID: 34093868. PMCID: PMC8171084. DOI: 10.7150/thno.59644.
12 Schraa SJ, van Rooijen KL, van der Kruijssen DEW, et al. Circulating tumor DNA guided adjuvant chemotherapy in stage II colon cancer (MEDOCC-CrEATE): study protocol for a trial within a cohort study[J]. BMC Cancer, 2020, 20(1): 790. PMID: 32819390. PMCID: PMC7441668. DOI: 10.1186/s12885-020-07252-y.
13 Chen M, Jian D, Sidorov M, et al. Pitfalls and rewards of setting up a liquid biopsy approach for the detection of driver mutations in circulating tumor DNAs: our institutional experience[J]. J Pers Med, 2022, 12(11): 1845. PMID: 36579573. PMCID: PMC9692455. DOI: 10.3390/jpm12111845.
14 Dhakal B, Sharma S, Balcioglu M, et al. Assessment of molecular residual disease using circulating tumor DNA to identify multiple myeloma patients at high risk of relapse[J]. Front Oncol, 2022, 12: 786451. PMID: 35186734. PMCID: PMC8848740. DOI: 10.3389/fonc.2022.786451.
15 Benesova L, Ptackova R, Halkova T, et al. Detection and quantification of ctDNA for longitudinal monitoring of treatment in non-small cell lung cancer patients using a universal mutant detection assay by denaturing capillary electrophoresis[J]. Pathol Oncol Res, 2022, 28: 1610308. PMID: 35837614. PMCID: PMC9274771. DOI: 10.3389/pore.2022.1610308.
16 Wang S, Li M, Zhang J, et al. Circulating tumor DNA integrating tissue clonality detects minimal residual disease in resectable non-small-cell lung cancer[J]. J Hematol Oncol, 2022, 15(1): 137. PMID: 36183093. PMCID: PMC9526343. DOI: 10.1186/s13045-022-01355-8.
17 Loupakis F, Sharma S, Derouazi M, et al. Detection of molecular residual disease using personalized circulating tumor DNA assay in patients with colorectal cancer undergoing resection of metastases[J]. JCO Precis Oncol, 2021, 5: PO.21.00101. PMID: 34327297. PMCID: PMC8315303. DOI: 10.1200/PO.21.00101.
18 Reinert T, Henriksen TV, Christensen E, et al. Analysis of plasma cell-free DNA by ultradeep sequencing in patients with stages I to III colorectal cancer[J]. JAMA Oncol, 2019, 5(8): 1124-1131. PMID: 31070691. PMCID: PMC6512280. DOI: 10.1001/jamaoncol.2019.0528.
19 Yue D, Liu W, Chen C, et al. Circulating tumor DNA predicts neoadjuvant immunotherapy efficacy and recurrence-free survival in surgical non-small cell lung cancer patients[J]. Transl Lung Cancer Res, 2022, 11(2): 263-276. PMID: 35280315. PMCID: PMC8902085. DOI: 10.21037/tlcr-22-106.
20 Wang Y, Yang L, Bao H, et al. Utility of ctDNA in predicting response to neoadjuvant chemoradiotherapy and prognosis assessment in locally advanced rectal cancer: a prospective cohort study[J]. PLoS Med, 2021, 18(8): e1003741. PMID: 34464382. PMCID: PMC8407540. DOI: 10.1371/journal.pmed.1003741.
21 Moding EJ, Liu Y, Nabet BY, et al. Circulating tumor DNA dynamics predict benefit from consolidation immunotherapy in locally advanced non-small-cell lung cancer[J]. Nat Cancer, 2020, 1(2): 176-183. PMID: 34505064. PMCID: PMC8425388. DOI: 10.1038/s43018-019-0011-0.
22 Tie J, Cohen JD, Wang Y, et al. Circulating tumor DNA analyses as markers of recurrence risk and benefit of adjuvant therapy for stage III colon cancer[J]. JAMA Oncol, 2019, 5(12): 1710-1717. PMID: 31621801. PMCID: PMC6802034. DOI: 10.1001/jamaoncol.2019.3616.
23 Madanat-Harjuoja LM, Renfro LA, Klega K, et al. Circulating tumor DNA as a biomarker in patients with stage III and IV Wilms tumor: analysis from a children's oncology group trial, AREN0533[J]. J Clin Oncol, 2022, 40(26): 3047-3056. PMID: 35580298. PMCID: PMC9462535. DOI: 10.1200/JCO.22.00098.
24 Kasi PM, Sawyer S, Guilford J, et al. BESPOKE study protocol: a multicentre, prospective observational study to evaluate the impact of circulating tumour DNA guided therapy on patients with colorectal cancer[J]. BMJ Open, 2021, 11(9): e047831. PMID: 34561256. PMCID: PMC8475162. DOI: 10.1136/bmjopen-2020-047831.
25 Qiu B, Guo W, Zhang F, et al. Dynamic recurrence risk and adjuvant chemotherapy benefit prediction by ctDNA in resected NSCLC[J]. Nat Commun, 2021, 12(1): 6770. PMID: 34799585. PMCID: PMC8605017. DOI: 10.1038/s41467-021-27022-z.
26 Pellini B, Pejovic N, Feng W, et al. ctDNA MRD detection and personalized oncogenomic analysis in oligometastatic colorectal cancer from plasma and urine[J]. JCO Precis Oncol, 2021, 5: PO.20.00276. PMID: 34250420. PMCID: PMC8232837. DOI: 10.1200/PO.20.00276.
27 Rossi D, Diop F, Spaccarotella E, et al. Diffuse large B-cell lymphoma genotyping on the liquid biopsy[J]. Blood, 2017, 129(14): 1947-1957. PMID: 28096087. DOI: 10.1182/blood-2016-05-719641.
28 Sánchez R, Dorado S, Ruíz-Heredia Y, et al. Detection of kinase domain mutations in BCR:ABL1 leukemia by ultra-deep sequencing of genomic DNA[J]. Sci Rep, 2022, 12(1): 13057. PMID: 35906470. PMCID: PMC9338264. DOI: 10.1038/s41598-022-17271-3.
29 Xu J, Pu Y, Lin R, et al. PEAC: an ultrasensitive and cost-effective MRD detection system in non-small cell lung cancer using plasma specimen[J]. Front Med (Lausanne), 2022, 9: 822200. PMID: 35308511. PMCID: PMC8928926. DOI: 10.3389/fmed.2022.822200.
30 Ganesamoorthy D, Robertson AJ, Chen W, et al. Whole genome deep sequencing analysis of cell-free DNA in samples with low tumour content[J]. BMC Cancer, 2022, 22(1): 85. PMID: 35057759. PMCID: PMC8772083. DOI: 10.1186/s12885-021-09160-1.
31 Link-Lenczowska D, Pallisgaard N, Cordua S, et al. A comparison of qPCR and ddPCR used for quantification of the JAK2 V617F allele burden in Ph negative MPNs[J]. Ann Hematol, 2018, 97(12): 2299-2308. PMID: 30056580. PMCID: PMC6208664. DOI: 10.1007/s00277-018-3451-1.
32 Elazezy M, Joosse SA. Techniques of using circulating tumor DNA as a liquid biopsy component in cancer management[J]. Comput Struct Biotechnol J, 2018, 16: 370-378. PMID: 30364656. PMCID: PMC6197739. DOI: 10.1016/j.csbj.2018.10.002.
33 Vessies DCL, Schuurbiers MMF, van der Noort V, et al. Combining variant detection and fragment length analysis improves detection of minimal residual disease in postsurgery circulating tumour DNA of stage II-IIIA NSCLC patients[J]. Mol Oncol, 2022, 16(14): 2719-2732. PMID: 35674097. PMCID: PMC9297781. DOI: 10.1002/1878-0261.13267.
34 Parikh AR, Van Seventer EE, Siravegna G, et al. Minimal residual disease detection using a plasma-only circulating tumor DNA assay in patients with colorectal cancer[J]. Clin Cancer Res, 2021, 27(20): 5586-5594. PMID: 33926918. PMCID: PMC8530842. DOI: 10.1158/1078-0432.CCR-21-0410.

基金

深圳市科技计划资助项目 (SGDX20201103095404018)。

PDF(502 KB)
HTML

Accesses

Citation

Detail

段落导航
相关文章

/