目的 分析宫内生长受限(intrauterine growth restriction, IUGR)足月新生儿的左心结构及功能特点。 方法 选取2019年1月—2022年1月在首都医科大学附属北京友谊医院新生儿病房收治的86例IUGR足月新生儿为IUGR组,随机选取同期出生的86例非IUGR足月适于胎龄儿为非IUGR组,比较分析两组新生儿临床数据及超声心动图结果。 结果 两组新生儿左心结构及功能分析显示,IUGR组新生儿的左心室质量、左室舒张末期内径、左室收缩末期内径、左房内径、舒张末期室间隔厚度、左室后壁厚度、左室舒张末期容积、左室收缩末期容积、每搏输出量低于非IUGR组(P<0.05),舒张末期室间隔相对厚度(舒张末期室间隔厚度与左室后壁厚度比值)、二尖瓣血流E峰与A峰比值≥1比例、心脏指数则高于非IUGR组(P<0.05)。Spearman秩相关分析结果显示,每搏输出量与出生体重及体表面积呈正相关(分别rs=0.241、0.241,P<0.05),舒张末期室间隔相对厚度与出生体重及体表面积呈负相关(分别rs=-0.229、-0.225,P<0.05)。 结论 IUGR新生儿左心室的收缩功能与非IUGR新生儿无明显差异。IUGR新生儿的室间隔相对更厚,此变化与出生体重及体表面积呈负相关。IUGR新生儿存在左心室舒张功能受损的情况。
Abstract
Objective To study the left heart structure and functional characteristics of term neonates with intrauterine growth restriction (IUGR). Methods This study included 86 term neonates with IUGR admitted to the Neonatal Ward of Beijing Friendship Hospital, Capital Medical University from January 2019 to January 2022 as the IUGR group, as well as randomly selected 86 term neonates without IUGR born during the same period as the non-IUGR group. The clinical data and echocardiographic data were compared between the two groups. Results The analysis of left heart structure and function showed that compared with the non-IUGR group, the IUGR group had significantly lower left ventricular mass, left ventricular end-diastolic diameter, left ventricular end-systolic diameter, left atrial diameter, end-diastolic interventricular septal thickness, left ventricular posterior wall thickness, left ventricular end-diastolic volume, left ventricular end-systolic volume, and stroke volume (P<0.05) and significantly higher ratio of end-diastolic interventricular septal thickness to left ventricular posterior wall thickness, proportion of neonates with a mitral peak E/A ratio of ≥1, and cardiac index (P<0.05). The Spearman correlation analysis suggested that stroke volume was positively correlated with birth weight and body surface area (rs=0.241 and 0.241 respectively; P<0.05) and that the ratio of end-diastolic interventricular septal thickness to left ventricular posterior wall thickness was negatively correlated with birth weight and body surface area (rs=-0.229 and -0.225 respectively; P<0.05). Conclusions The left ventricular systolic function of neonates with IUGR is not significantly different from that of neonates without IUGR. However, the ventricular septum is thicker in neonates with IUGR. This change is negatively correlated with birth weight and body surface area. The left ventricular diastolic function may be impaired in neonates with IUGR.
关键词
宫内生长受限 /
左心结构 /
左心功能 /
超声心动图 /
病例对照研究 /
新生儿
Key words
Intrauterine growth restriction /
Left heart structure /
Left heart function /
Echocardiography /
Case-control study /
Neonate
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
1 Aplin JD, Myers JE, Timms K, et al. Tracking placental development in health and disease[J]. Nat Rev Endocrinol, 2020, 16(9): 479-494. PMID: 32601352. DOI: 10.1038/s41574-020-0372-6.
2 Fetal growth restriction: ACOG practice bulletin, number 227[J]. Obstet Gynecol, 2021, 137(2): e16-e28. PMID: 33481528. DOI: 10.1097/AOG.0000000000004251.
3 Araujo Júnior E, Zamarian AC, Caetano AC, et al. Physiopathology of late-onset fetal growth restriction[J]. Minerva Obstet Gynecol, 2021, 73(4): 392-408. PMID: 33876907. DOI: 10.23736/S2724-606X.21.04771-7.
4 Guitart-Mampel M, Juarez-Flores DL, Youssef L, et al. Mitochondrial implications in human pregnancies with intrauterine growth restriction and associated cardiac remodelling[J]. J Cell Mol Med, 2019, 23(6): 3962-3973. PMID: 30941904. PMCID: PMC6533501. DOI: 10.1111/jcmm.14282.
5 Katz J, Lee AC, Kozuki N, et al. Mortality risk in preterm and small-for-gestational-age infants in low-income and middle-income countries: a pooled country analysis[J]. Lancet, 2013, 382(9890): 417-425. PMID: 23746775. PMCID: PMC3796350. DOI: 10.1016/S0140-6736(13)60993-9.
6 Amruta N, Kandikattu HK, Intapad S. Cardiovascular dysfunction in intrauterine growth restriction[J]. Curr Hypertens Rep, 2022, 24(12): 693-708. PMID: 36322299. DOI: 10.1007/s11906-022-01228-y.
7 Zanardo V, Fanelli T, Weiner G, et al. Intrauterine growth restriction is associated with persistent aortic wall thickening and glomerular proteinuria during infancy[J]. Kidney Int, 2011, 80(1): 119-123. PMID: 21490588. PMCID: PMC3257045. DOI: 10.1038/ki.2011.99.
8 Patey O, Carvalho JS, Thilaganathan B. Perinatal changes in cardiac geometry and function in growth-restricted fetuses at term[J]. Ultrasound Obstet Gynecol, 2019, 53(5): 655-662. PMID: 30084123. DOI: 10.1002/uog.19193.
9 Bullough S, Navaratnam K, Sharp A. Investigation and management of the small for gestational age fetus[J]. Obstet Gynaecol Reprod Med, 2021, 31(1): 1-7. DOI: 10.1016/j.ogrm.2020.11.002.
10 中华医学会围产医学分会胎儿医学学组, 中华医学会妇产科学分会产科学组. 胎儿生长受限专家共识(2019版)[J]. 中国产前诊断杂志(电子版), 2019, 11(4): 78-98. DOI: 10.13470/j.cnki.cjpd.2019.04.017.
11 Devereux RB, Alonso DR, Lutas EM, et al. Echocardiographic assessment of left ventricular hypertrophy: comparison to necropsy findings[J]. Am J Cardiol, 1986, 57(6): 450-458. PMID: 2936235. DOI: 10.1016/0002-9149(86)90771-x.
12 Chassen S, Jansson T. Complex, coordinated and highly regulated changes in placental signaling and nutrient transport capacity in IUGR[J]. Biochim Biophys Acta Mol Basis Dis, 2020, 1866(2): 165373. PMID: 30684642. PMCID: PMC6650384. DOI: 10.1016/j.bbadis.2018.12.024.
13 Cruz-Lemini M, Crispi F, Valenzuela-Alcaraz B, et al. Fetal cardiovascular remodeling persists at 6 months in infants with intrauterine growth restriction[J]. Ultrasound Obstet Gynecol, 2016, 48(3): 349-356. PMID: 26415719. DOI: 10.1002/uog.15767.
14 Crispi F, Crovetto F, Gratacos E. Intrauterine growth restriction and later cardiovascular function[J]. Early Hum Dev, 2018, 126: 23-27. PMID: 30206007. DOI: 10.1016/j.earlhumdev.2018.08.013.
15 Frasch MG, Giussani DA. Impact of chronic fetal hypoxia and inflammation on cardiac pacemaker cell development[J]. Cells, 2020, 9(3): 733. PMID: 32192015. PMCID: PMC7140710. DOI: 10.3390/cells9030733.
16 Botting KJ, Loke XY, Zhang S, et al. IUGR decreases cardiomyocyte endowment and alters cardiac metabolism in a sex- and cause-of-IUGR-specific manner[J]. Am J Physiol Regul Integr Comp Physiol, 2018, 315(1): R48-R67. PMID: 29561647. DOI: 10.1152/ajpregu.00180.2017.
17 Fouzas S, Karatza AA, Davlouros PA, et al. Neonatal cardiac dysfunction in intrauterine growth restriction[J]. Pediatr Res, 2014, 75(5): 651-657. PMID: 24522102. DOI: 10.1038/pr.2014.22.
18 Vangrieken P, Remels AHV, Al-Nasiry S, et al. Placental hypoxia-induced alterations in vascular function, morphology, and endothelial barrier integrity[J]. Hypertens Res, 2020, 43(12): 1361-1374. PMID: 32733105. DOI: 10.1038/s41440-020-0528-8.
19 Vangrieken P, Al-Nasiry S, Janssen GMJ, et al. The direct and sustained consequences of severe placental hypoxia on vascular contractility[J]. PLoS One, 2018, 13(8): e0202648. PMID: 30142162. PMCID: PMC6108468. DOI: 10.1371/journal.pone.0202648.
20 Mahle WT, Rychik J, Tian ZY, et al. Echocardiographic evaluation of the fetus with congenital cystic adenomatoid malformation[J]. Ultrasound Obstet Gynecol, 2000, 16(7): 620-624. PMID: 11169367. DOI: 10.1046/j.1469-0705.2000.00254.x.
21 Crispi F, Hernandez-Andrade E, Pelsers MM, et al. Cardiac dysfunction and cell damage across clinical stages of severity in growth-restricted fetuses[J]. Am J Obstet Gynecol, 2008, 199(3): 254.e1-254.e8. PMID: 18771973. DOI: 10.1016/j.ajog.2008.06.056.
22 Naujorks AA, Zielinsky P, Beltrame PA, et al. Myocardial tissue Doppler assessment of diastolic function in the growth-restricted fetus[J]. Ultrasound Obstet Gynecol, 2009, 34(1): 68-73. PMID: 19565528. DOI: 10.1002/uog.6427.
23 Li W, Mata KM, Mazzuca MQ, et al. Altered matrix metalloproteinase-2 and -9 expression/activity links placental ischemia and anti-angiogenic sFlt-1 to uteroplacental and vascular remodeling and collagen deposition in hypertensive pregnancy[J]. Biochem Pharmacol, 2014, 89(3): 370-385. PMID: 24704473. PMCID: PMC4034157. DOI: 10.1016/j.bcp.2014.03.017.
24 Martyn CN, Greenwald SE. Impaired synthesis of elastin in walls of aorta and large conduit arteries during early development as an initiating event in pathogenesis of systemic hypertension[J]. Lancet, 1997, 350(9082): 953-955. PMID: 9314885. DOI: 10.1016/s0140-6736(96)10508-0.
25 Goedegebuure WJ, Van der Steen M, Smeets CCJ, et al. SGA-born adults with postnatal catch-up have a persistently unfavourable metabolic health profile and increased adiposity at age 32 years[J]. Eur J Endocrinol, 2022, 187(1): 15-26. PMID: 35521698. DOI: 10.1530/EJE-21-1130.
26 Sebastiani G, Díaz M, Bassols J, et al. The sequence of prenatal growth restraint and post-natal catch-up growth leads to a thicker intima-media and more pre-peritoneal and hepatic fat by age 3-6 years[J]. Pediatr Obes, 2016, 11(4): 251-257. PMID: 26132470. DOI: 10.1111/ijpo.12053.
27 Díaz M, Campderrós L, Guimaraes MP, et al. Circulating growth-and-differentiation factor-15 in early life: relation to prenatal and postnatal growth and adiposity measurements[J]. Pediatr Res, 2020, 87(5): 897-902. PMID: 31645058. DOI: 10.1038/s41390-019-0633-z.
基金
首都卫生发展科研专项项目(2022-1-2111)。