目的 探究儿童金黄色葡萄球菌(以下简称“金葡菌”)的分子特征,并比较不同类型菌株(感染菌株与定植菌株)的分子特征差异性,从而揭示金葡菌致病相关分子标志物。 方法 采用横断面研究设计,对社区健康儿童进行鼻咽拭子采样和医院感染儿童进行临床标本采样。采用全基因组测序技术检测金葡菌耐药基因和毒素基因。采用随机森林方法筛选金葡菌致病相关标志物。 结果 共检出512株金葡菌(272株感染菌株、240株定植菌株)。对于毒素基因,感染菌株组的肠毒素基因(seb和sep)、胞外酶编码基因(splA、splB、splE和edinC)、杀白细胞毒素基因(lukD、lukE、lukF-PV和lukS-PV)和表皮剥脱毒素基因(eta和etb)携带率均高于定植菌株组(均P<0.05),但肠毒素基因(sec、sec3、seg、seh、sei、sel、sem、sen、seo和seu)携带率低于定植菌株组(均P<0.05)。对于耐药基因,感染菌株组的lnuA、lnuG、aadD、tetK和dfrG耐药基因携带率明显高于定植菌株组(均P<0.05)。随机森林模型筛选金葡菌致病相关标志物,筛选前后模型交叉验证的正确率分别为69%、68%,曲线下面积分别为0.75、0.70;最终筛选出16个致病相关标志物[sem、etb、splE、sep、ser、mecA、lnuA、sea、blaZ、cat(pC233)、blaTEm-1A、aph(3')-Ⅲ、ermB、ermA、ant(9)-Ⅰa和ant(6)-Ⅰa];变量重要性排序中前5个最重要变量为sem(OR=0.40)、etb(OR=3.95)、splE(OR=1.68)、sep(OR=3.97)、ser(OR=1.68)。 结论 随机森林模型可筛选出金葡菌致病相关标志物且模型预测效果较优,为追溯高致病性金葡菌和开展精准的靶向干预提供遗传学证据。
Abstract
Objective To explore the molecular characteristics of Staphylococcus aureus (S. aureus) in children, and to compare the molecular characteristics of different types of strains (infection and colonization strains) so as to reveal pathogenic molecular markers of S. aureus. Methods A cross-sectional study design was used to conduct nasopharyngeal swab sampling from healthy children in the community and clinical samples from infected children in the hospital. Whole genome sequencing was used to detect antibiotic resistance genes and virulence genes. A random forest method to used to screen pathogenic markers. Results A total of 512 S. aureus strains were detected, including 272 infection strains and 240 colonization strains. For virulence genes, the carrying rates of enterotoxin genes (seb and sep), extracellular enzyme coding genes (splA, splB, splE and edinC), leukocytotoxin genes (lukD, lukE, lukF-PV and lukS-PV) and epidermal exfoliating genes (eta and etb) in infection strains were higher than those in colonization strains. But the carrying rates of enterotoxin genes (sec, sec3, seg, seh, sei, sel, sem, sen, seo and seu) were lower in infection strains than in colonization strains (P<0.05). For antibiotic resistance genes, the carrying rates of lnuA, lnuG, aadD, tetK and dfrG were significantly higher in infection strains than in colonization strains (P<0.05). The accuracy of cross-validation of the random forest model for screening pathogenic markers of S. aureus before and after screening was 69% and 68%, respectively, and the area under the curve was 0.75 and 0.70, respectively. The random forest model finally screened out 16 pathogenic markers (sem, etb, splE, sep, ser, mecA, lnuA, sea, blaZ, cat(pC233), blaTEm-1A, aph(3')-III, ermB, ermA, ant(9)-Ia and ant(6)-Ia). The top five variables in the variable importance ranking were sem (OR=0.40), etb (OR=3.95), splE (OR=1.68), sep (OR=3.97), and ser (OR=1.68). Conclusions The random forest model can screen out pathogenic markers of S. aureus and exhibits a superior predictive performance, providing genetic evidence for tracing highly pathogenic S. aureus and conducting precise targeted interventions.
关键词
金黄色葡萄球菌 /
分子特征 /
随机森林 /
全基因组测序 /
儿童
Key words
Staphylococcus aureus /
Molecular characteristic /
Random forest /
Genome wide sequencing /
Child
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
1 Ahmad-Mansour N, Loubet P, Pouget C, et al. Staphylococcus aureus toxins: an update on their pathogenic properties and potential treatments[J]. Toxins (Basel), 2021, 13(10): 677. PMID: 34678970. PMCID: PMC8540901. DOI: 10.3390/toxins13100677.
2 Wertheim HF, Melles DC, Vos MC, et al. The role of nasal carriage in Staphylococcus aureus infections[J]. Lancet Infect Dis, 2005, 5(12): 751-762. PMID: 16310147. DOI: 10.1016/S1473-3099(05)70295-4.
3 Hamdy RF, Dona D, Jacobs MB, et al. Risk factors for complications in children with Staphylococcus aureus bacteremia[J]. J Pediatr, 2019, 208: 214-220.e2. PMID: 30879729. DOI: 10.1016/j.jpeds.2018.12.002.
4 Shettigar K, Murali TS. Virulence factors and clonal diversity of Staphylococcus aureus in colonization and wound infection with emphasis on diabetic foot infection[J]. Eur J Clin Microbiol Infect Dis, 2020, 39(12): 2235-2246. PMID: 32683595. PMCID: PMC7669779. DOI: 10.1007/s10096-020-03984-8.
5 宋欠欠, 李轶群, 侯艳, 等. 随机森林的变量捕获方法在高维数据变量筛选中的应用[J]. 中国卫生统计, 2015, 32(1): 49-53.
6 Prjibelski A, Antipov D, Meleshko D, et al. Using SPAdes de novo assembler[J]. Curr Protoc Bioinformatics, 2020, 70(1): e102. PMID: 32559359. DOI: 10.1002/cpbi.102.
7 Bortolaia V, Kaas RS, Ruppe E, et al. ResFinder 4.0 for predictions of phenotypes from genotypes[J]. J Antimicrob Chemother, 2020, 75(12): 3491-3500. PMID: 32780112. PMCID: PMC7662176. DOI: 10.1093/jac/dkaa345.
8 Croucher NJ, Page AJ, Connor TR, et al. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins[J]. Nucleic Acids Res, 2015, 43(3): e15. PMID: 25414349. PMCID: PMC4330336. DOI: 10.1093/nar/gku1196.
9 Catanzaro D, Pesenti R, Milinkovitch MC. A non-linear optimization procedure to estimate distances and instantaneous substitution rate matrices under the GTR model[J]. Bioinformatics, 2006, 22(6): 708-715. PMID: 16397009. DOI: 10.1093/bioinformatics/btk001.
10 Ishwaran H, Kogalur UB, Gorodeski EZ, et al. High-dimensional variable selection for survival data[J]. J Am Stat Assoc, 2010, 105(489): 205-217. DOI: 10.1198/jasa.2009.tm08622.
11 Peacock SJ, Paterson GK. Mechanisms of methicillin resistance in Staphylococcus aureus[J]. Annu Rev Biochem, 2015, 84: 577-601. PMID: 26034890. DOI: 10.1146/annurev-biochem-060614-034516.
12 江培涛, 方敏, 刘棵文, 等. 仪征地区鲍曼不动杆菌碳青霉烯类抗菌药耐药相关酶表型和基因型分析[J]. 南京医科大学学报(自然科学版), 2019, 39(1): 54-61. DOI: 10.7655/NYDXBNS20190110.
13 罗曼, 刘倩. 食源性金黄色葡萄球菌耐药机制分析[J]. 中国病原生物学杂志, 2022, 17(6): 685-688. DOI: 10.13350/j.cjpb.220613.
14 Mahfouz AA, Said HS, Elfeky SM, et al. Inhibition of erythromycin and erythromycin-induced resistance among Staphylococcus aureus clinical isolates[J]. Antibiotics (Basel), 2023, 12(3): 503. PMID: 36978370. PMCID: PMC10044026. DOI: 10.3390/antibiotics12030503.
15 Etter D, Schelin J, Schuppler M, et al. Staphylococcal enterotoxin C: an update on SEC variants, their structure and properties, and their role in foodborne intoxications[J]. Toxins (Basel), 2020, 12(9): 584. PMID: 32927913. PMCID: PMC7551944. DOI: 10.3390/toxins12090584.
16 Lo WT, Wang SR, Tseng MH, et al. Comparative molecular analysis of meticillin-resistant Staphylococcus aureus isolates from children with atopic dermatitis and healthy subjects in Taiwan[J]. Br J Dermatol, 2010, 162(5): 1110-1116. PMID: 20132206. DOI: 10.1111/j.1365-2133.2010.09679.x.
17 Oliveira D, Borges A, Sim?es M. Staphylococcus aureus toxins and their molecular activity in infectious diseases[J]. Toxins (Basel), 2018, 10(6): 252. PMID: 29921792. PMCID: PMC6024779. DOI: 10.3390/toxins10060252.
18 Nordengrün M, Abdurrahman G, Treffon J, et al. Allergic reactions to serine protease-like proteins of Staphylococcus aureus[J]. Front Immunol, 2021, 12: 651060. PMID: 33833764. PMCID: PMC8021911. DOI: 10.3389/fimmu.2021.651060.
19 Pérez-Montarelo D, Viedma E, Larrosa N, et al. Molecular epidemiology of Staphylococcus aureus bacteremia: association of molecular factors with the source of infection[J]. Front Microbiol, 2018, 9: 2210. PMID: 30319561. PMCID: PMC6167439. DOI: 10.3389/fmicb.2018.02210.
20 Lange J, Heidenreich K, Higelin K, et al. Staphylococcus aureus pathogenicity in cystic fibrosis patients: results from an observational prospective multicenter study concerning virulence genes, phylogeny, and gene plasticity[J]. Toxins (Basel), 2020, 12(5): 279. PMID: 32357453. PMCID: PMC7290773. DOI: 10.3390/toxins12050279.
基金
广东省基础与应用基础研究基金(2023A1515011583);国家自然科学基金(81973069)。