目的 了解幼儿园儿童年龄与肺炎链球菌疫苗覆盖率间的潜在关系,为指导疫苗接种和开发新型蛋白疫苗提供依据。 方法 采用分层整群随机抽样方法,抽取佛山市顺德区6所幼儿园中1 830名健康儿童,进行鼻咽拭子采样并分离鉴定肺炎链球菌。采用基于限制性立方样条的logistic回归模型分析儿童年龄与肺炎链球菌相关疫苗覆盖率间的剂量-反应关系。 结果 幼儿园儿童鼻咽部肺炎链球菌携带率为22.46%(411/1 830),常见血清型为6B、19F、15A、23A、34与23F。对于肺炎链球菌结合疫苗(pneumococcal conjugate vaccine, PCV),PCV10与PCV13血清型覆盖率分别为53.0%、57.9%,且儿童年龄与PCV10和PCV13血清型覆盖率间存在明显的非线性剂量-反应关系(均P<0.05),2岁组儿童的PCV10(88.0%)和PCV13(91.1%)血清型覆盖率均较高。儿童年龄与菌毛基因岛(pilus islet, PI)相关基因PI-1、PI-2覆盖率间存在非线性剂量-反应关系(均P<0.05),PI-1(37.7%)和PI-2(16.1%)覆盖率较低,且各年龄组儿童的PI-1(13.0%~58.5%)和PI-2(6.0%~29.4%)覆盖率均较低。候选蛋白疫苗相关的毒力基因lytA(99.5%)、ply(99.0%)覆盖率高。 结论 幼儿园儿童年龄与PCV10、PCV13血清型覆盖率存在明显的非线性剂量-反应关系,且2岁组幼儿园儿童具有较高的PCV血清型覆盖率;毒力基因lytA与ply的各年龄段高流行使其有望作为候选毒力因子开发新一代重组蛋白疫苗。
Abstract
Objective To investigate the potential relationship between age and Streptococcus pneumoniae vaccination coverage in kindergarten children, and to provide a basis for guiding vaccination and developing new protein vaccines. Methods The stratified cluster random sampling method was used to select 1 830 healthy children from six kindergartens in Shunde District, Foshan City, China, and nasopharyngeal swabs were collected for the isolation and identification of Streptococcus pneumoniae. The logistic regression model based on restricted cubic spline was used to analyze the dose-response relationship between age and Streptococcus pneumoniae vaccination coverage. Results The rate of nasal Streptococcus pneumoniae carriage was 22.46% (411/1 830) among the kindergarten children, with the predominant serotypes of 6B, 19F, 15A, 23A, 34, and 23F. The coverage rates of 10-valent pneumococcal conjugate vaccine (PCV10) and 13-valent pneumococcal conjugate vaccine (PCV13) were 53.0% and 57.9%, respectively, and there was a significant non-linear dose-response relationship between age and the coverage rates of PCV10 and PCV13 (P<0.05), with a higher coverage rate of PCV10 (88.0%) and PCV13 (91.1%) in the children aged 2 years. There was a significant non-linear dose-response relationship between age and the coverage rates of pilus islet 1 (PI-1) and pilus islet 2 (PI-2) (P<0.05), with a lower vaccination coverage rate for PI-1 (37.7%) and PI-2 (16.1%). The coverage rates of PI-1 (13.0%-58.5%) and PI-2 (6.0%-29.4%) were lower in all age groups. The virulence genes lytA (99.5%) and ply (99.0%) associated with candidate protein vaccines showed higher vaccination coverage rates. Conclusions There is a significant non-linear dose-response relationship between the age of kindergarten children and the coverage rates of PCV10 and PCV13 serotypes, and kindergarten children aged 2 years have a relatively high coverage rate of PCV. The high prevalence of the virulence genes lytA and ply shows that they are expected to become candidate virulence factors for the development of a new generation of recombinant protein vaccines.
关键词
肺炎链球菌 /
血清型 /
肺炎链球菌结合疫苗 /
蛋白疫苗 /
儿童
Key words
Streptococcus pneumoniae /
Serotype /
Pneumococcal conjugate vaccine /
Protein vaccine /
Child
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
1 周梦兰, 于淑颖, 杨启文, 等. 肺炎链球菌鼻咽部定植及胞内感染的致病机制研究进展[J]. 中国新药杂志, 2020, 29(5): 530-533. DOI: 10.3969/j.issn.1003-3734.2020.05.009.
2 中华预防医学会, 中华预防医学会疫苗与免疫分会. 肺炎球菌性疾病免疫预防专家共识(2020版)[J]. 中华流行病学杂志, 2020, 41(12): 1945-1979. PMID: 33261246. DOI: 10.3760/cma.j.cn112338-20201111-01322.
3 Tan TQ. Pediatric invasive pneumococcal disease in the United States in the era of pneumococcal conjugate vaccines[J]. Clin Microbiol Rev, 2012, 25(3): 409-419. PMID: 22763632. PMCID: PMC3416489. DOI: 10.1128/CMR.00018-12.
4 Dhoubhadel BG, Morimoto K. Prevention of pneumococcal diseases: the challenge remains[J]. Lancet Glob Health, 2022, 10(10): e1375-e1376. PMID: 36113515. DOI: 10.1016/S2214-109X(22)00374-6.
5 Golden AR, Adam HJ, Karlowsky JA, et al. Molecular characterization of predominant Streptococcus pneumoniae serotypes causing invasive infections in Canada: the SAVE study, 2011-15[J]. J Antimicrob Chemother, 2018, 73(suppl_7): vii20-vii31. PMID: 29982573. DOI: 10.1093/jac/dky157.
6 World Health Organization. Pneumococcal conjugate vaccines in infants and children under 5 years of age: WHO position paper-February 2019[J]. Wkly Epidemiol Rec, 2019, 94(8): 85-103.
7 Liu Y, Li W, Dong Q, et al. Non-linear relationships between children age and pneumococcal vaccine coverage: important implications for vaccine prevention strategies[J]. Vaccine, 2021, 39(9): 1392-1401. PMID: 33531198. DOI: 10.1016/j.vaccine.2021.01.056.
8 McDaniel LS, Swiatlo E. If not now, when? Nonserotype pneumococcal protein vaccines[J]. Open Forum Infect Dis, 2021, 8(12): ofab576. PMID: 34934775. PMCID: PMC8684483. DOI: 10.1093/ofid/ofab576.
9 Zangari T, Zafar MA, Lees JA, et al. Pneumococcal capsule blocks protection by immunization with conserved surface proteins[J]. NPJ Vaccines, 2021, 6(1): 155. PMID: 34930916. PMCID: PMC8688510. DOI: 10.1038/s41541-021-00413-5.
10 Ganaie F, Maruhn K, Li C, et al. Structural, genetic, and serological elucidation of Streptococcus pneumoniae serogroup 24 serotypes: discovery of a new serotype, 24C, with a variable capsule structure[J]. J Clin Microbiol, 2021, 59(7): e0054021. PMID: 33883183. PMCID: PMC8218768. DOI: 10.1128/JCM.00540-21.
11 Chen H, Liu C. Molecular epidemiology of Streptococcus pneumoniae isosslated from children with community-acquired pneumonia under 5 years in Chengdu, China[J]. Epidemiol Infect, 2022, 151: e2. PMID: 36515066. PMCID: PMC9990402. DOI: 10.1017/S0950268822001881.
12 Yu YY, Xie XH, Ren L, et al. Epidemiological characteristics of nasopharyngeal Streptococcus pneumoniae strains among children with pneumonia in Chongqing, China[J]. Sci Rep, 2019, 9(1): 3324. PMID: 30824811. PMCID: PMC6397308. DOI: 10.1038/s41598-019-40088-6.
13 Hocknell RE, Cleary DW, Srifeungfung S, et al. Serotype distribution of disease-causing Streptococcus pneumoniae in Thailand: a systematic review[J]. Vaccine, 2019, 37(24): 3159-3166. PMID: 31060951. DOI: 10.1016/j.vaccine.2019.04.085.
14 Olarte L, Barson WJ, Barson RM, et al. Pneumococcal pneumonia requiring hospitalization in US children in the 13-valent pneumococcal conjugate vaccine era[J]. Clin Infect Dis, 2017, 64(12): 1699-1704. PMID: 28199482. DOI: 10.1093/cid/cix115.
15 Sidorenko S, Rennert W, Lobzin Y, et al. Multicenter study of serotype distribution of Streptococcus pneumoniae nasopharyngeal isolates from healthy children in the Russian Federation after introduction of PCV13 into the national vaccination calendar[J]. Diagn Microbiol Infect Dis, 2020, 96(1): 114914. PMID: 31704066. DOI: 10.1016/j.diagmicrobio.2019.114914.
16 余海峰, 邓文君, 李平原, 等. 佛山市学龄前儿童肺炎链球菌的传播模式及影响因素[J]. 中华疾病控制杂志, 2023, 27(2): 184-190. DOI: 10.16462/j.cnki.zhjbkz.2023.02.010.
17 Zhang X, Tian J, Shan W, et al. Characteristics of pediatric invasive pneumococcal diseases and the pneumococcal isolates in Suzhou, China before introduction of PCV13[J]. Vaccine, 2017, 35(33): 4119-4125. PMID: 28668572. DOI: 10.1016/j.vaccine.2017.06.046.
18 Yan Z, Cui Y, Zhou W, et al. Molecular characterization of Streptococcus pneumoniae in children living in southwest China and assessment of a potential protein vaccine, rPfbA[J]. Vaccine, 2019, 37(5): 721-731. PMID: 30611601. DOI: 10.1016/j.vaccine.2018.12.021.
19 Zhao W, Pan F, Wang B, et al. Epidemiology characteristics of Streptococcus pneumoniae from children with pneumonia in Shanghai: a retrospective study[J]. Front Cell Infect Microbiol, 2019, 9: 258. PMID: 31380301. PMCID: PMC6657011. DOI: 10.3389/fcimb.2019.00258.
20 Chen K, Zhang X, Shan W, et al. Serotype distribution of Streptococcus pneumoniae and potential impact of pneumococcal conjugate vaccines in China: a systematic review and meta-analysis[J]. Hum Vaccin Immunother, 2018, 14(6): 1453-1463. PMID: 29451838. PMCID: PMC6037451. DOI: 10.1080/21645515.2018.1435224.
21 Savulescu C, Krizova P, Valentiner-Branth P, et al. Effectiveness of 10 and 13-valent pneumococcal conjugate vaccines against invasive pneumococcal disease in European children: SpIDnet observational multicentre study[J]. Vaccine, 2022, 40(29): 3963-3974. PMID: 35637067. DOI: 10.1016/j.vaccine.2022.05.011.
22 Guo MY, Shi XH, Gao W, et al. The dynamic change of serotype distribution and antimicrobial resistance of pneumococcal isolates since PCV13 administration and COVID-19 control in Urumqi, China[J]. Front Cell Infect Microbiol, 2023, 13: 1110652. PMID: 36844410. PMCID: PMC9951612. DOI: 10.3389/fcimb.2023.1110652.
23 Mokaddas E, Syed S, Albert MJ. The 13-valent pneumococcal conjugate vaccine (PCV13) does not appear to provide much protection on combined invasive disease due to the six PCV13 non-PCV7 serotypes 1, 3, 5, 6A, 7F, and 19A in Kuwait during 2010-2019[J]. Hum Vaccin Immunother, 2021, 17(11): 4661-4666. PMID: 34435932. PMCID: PMC8828145. DOI: 10.1080/21645515.2021.1968216.
24 Feldman C, Anderson R. Review: current and new generation pneumococcal vaccines[J]. J Infect, 2014, 69(4): 309-325. PMID: 24968238. DOI: 10.1016/j.jinf.2014.06.006.
25 Azarian T, Grant LR, Georgieva M, et al. Association of pneumococcal protein antigen serology with age and antigenic profile of colonizing isolates[J]. J Infect Dis, 2017, 215(5): 713-722. PMID: 28035010. PMCID: PMC6005115. DOI: 10.1093/infdis/jiw628.
26 Yan Z, Cui Y, Huang X, et al. Molecular characterization based on whole-genome sequencing of Streptococcus pneumoniae in children living in southwest China during 2017-2019[J]. Front Cell Infect Microbiol, 2021, 11: 726740. PMID: 34796125. PMCID: PMC8593041. DOI: 10.3389/fcimb.2021.726740.
基金
国家自然科学基金(81973069);广东省基础与应用基础研究基金(2019A1515010915)。