目的 探讨脑功能连接及非线性动力学分析在发作控制的婴儿痉挛症(infantile spasm, IS)患儿脑功能评估中的作用。 方法 回顾性选择2019年1月—2023年1月安徽省儿童医院神经科就诊且发作控制的14例IS患儿为IS组,选择同期性别、年龄匹配的12例健康体检儿童为健康对照组。分析2组患儿的脑电图数据,比较其脑网络特征,同时计算非线性动力学指标,包括近似熵、样本熵、排列熵、LZ复杂度。 结果 功能连接显示,与健康对照组比较,IS组网络连接强度增大,其中Fp2与F8两通道之间的连接强度组间比较差异有统计学意义(P<0.05)。网络稳定性分析发现,在不同长度时间窗口下,IS组网络稳定性均高于健康对照组(P<0.05)。非线性动力学分析显示,IS组Fz电极上样本熵小于健康对照组(P<0.05)。 结论 少数预后良好的IS患儿仍存在脑网络及样本熵异常,推测脑电定量分析指标可成为评价IS患儿脑功能状态的神经生物学标志物。
Abstract
Objective To investigate the role of brain functional connectivity and nonlinear dynamic analysis in brain function assessment for infants with controlled infantile spasm (IS). Methods A retrospective analysis was performed on 14 children with controlled IS (IS group) who were admitted to the Department of Neurology, Anhui Provincial Children's Hospital, from January 2019 to January 2023. Twelve healthy children, matched for sex and age, were enrolled as the control group. Electroencephalogram (EEG) data were analyzed for both groups to compare the features of brain network, and nonlinear dynamic indicators were calculated, including approximate entropy, sample entropy, permutation entropy, and permutation Lempel-Ziv complexity. Results Brain functional connectivity showed that compared with the control group, the IS group had an increase in the strength of functional connectivity, and there was a significant difference between the two groups in the connection strength between the Fp2 and F8 channels (P<0.05). The network stability analysis showed that the IS group had a significantly higher network stability than the control group at different time windows (P<0.05). The nonlinear dynamic analysis showed that compared with the control group, the IS group had a significantly lower sample entropy of Fz electrode (P<0.05). Conclusions Abnormalities in brain network and sample entropy may be observed in some children with controlled IS, and it is suggested that quantitative EEG analysis parameters can serve as neurological biomarkers for evaluating brain function in children with IS.
关键词
婴儿痉挛症 /
癫痫性痉挛 /
脑电描记术 /
非线性动力学 /
功能连接 /
儿童
Key words
Infantile spasm /
Epileptic spasm /
Electroencephalography /
Nonlinear dynamics /
Functional connectivity /
Child
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
1 Pellock JM, Hrachovy R, Shinnar S, et al. Infantile spasms: a U.S. consensus report[J]. Epilepsia, 2010, 51(10): 2175-2189. PMID: 20608959. DOI: 10.1111/j.1528-1167.2010.02657.x.
2 Sidenvall R, Eeg-Olofsson O. Epidemiology of infantile spasms in Sweden[J]. Epilepsia, 1995, 36(6): 572-574. PMID: 7555969. DOI: 10.1111/j.1528-1157.1995.tb02569.x.
3 Specchio N, Wirrell EC, Scheffer IE, et al. International League Against Epilepsy classification and definition of epilepsy syndromes with onset in childhood: position paper by the ILAE Task Force on Nosology and Definitions[J]. Epilepsia, 2022, 63(6): 1398-1442. PMID: 35503717. DOI: 10.1111/epi.17241.
4 Perret EV, von Elm E, Lienert C, et al. Infantile spasms: does season influence onset and long-term outcome?[J]. Pediatr Neurol, 2010, 43(2): 92-96. PMID: 20610118. DOI: 10.1016/j.pediatrneurol.2010.03.006.
5 Mandelbaum DE, Krawciw N, Assing E, et al. Topographic mapping of brain potentials in the newborn infant: the establishment of normal values and utility in assessing infants with neurological injury[J]. Acta Paediatr, 2000, 89(9): 1104-1110. PMID: 11071093. DOI: 10.1080/713794558.
6 Shrey DW, Kim McManus O, Rajaraman R, et al. Strength and stability of EEG functional connectivity predict treatment response in infants with epileptic spasms[J]. Clin Neurophysiol, 2018, 129(10): 2137-2148. PMID: 30114662. PMCID: PMC6193760. DOI: 10.1016/j.clinph.2018.07.017.
7 Pavone P, Striano P, Falsaperla R, et al. Infantile spasms syndrome, West syndrome and related phenotypes: what we know in 2013[J]. Brain Dev, 2014, 36(9): 739-751. PMID: 24268986. DOI: 10.1016/j.braindev.2013.10.008.
8 Gaily E, Appelqvist K, Kantola-Sorsa E, et al. Cognitive deficits after cryptogenic infantile spasms with benign seizure evolution[J]. Dev Med Child Neurol, 1999, 41(10): 660-664. PMID: 10587041. DOI: 10.1017/s001216229900136x.
9 张琴芬, 杜春蔚, 杨逸倩, 等. 脑电功率谱密度及功能连接分析在新生儿缺氧缺血性脑病中的意义初探[J]. 中华新生儿科杂志, 2021, 36(1): 8-13. DOI: 10.3760/cma.j.issn.2096-2932.2021.01.003.
10 Sunwoo JS, Cha KS, Byun JI, et al. Abnormal activation of motor cortical network during phasic REM sleep in idiopathic REM sleep behavior disorder[J]. Sleep, 2019, 42(2): zsy227. PMID: 30445515. DOI: 10.1093/sleep/zsy227.
11 H?ller Y, Helmstaedter C, Lehnertz K. Quantitative pharmaco-electroencephalography in antiepileptic drug research[J]. CNS Drugs, 2018, 32(9): 839-848. PMID: 30151652. PMCID: PMC6153969. DOI: 10.1007/s40263-018-0557-x.
12 Wang W, Li H, Yan J, et al. Automatic detection of interictal ripples on scalp EEG to evaluate the effect and prognosis of ACTH therapy in patients with infantile spasms[J]. Epilepsia, 2021, 62(9): 2240-2251. PMID: 34309835. DOI: 10.1111/epi.17018.
13 Tedrus GM, Negreiros LM, Ballarim RS, et al. Correlations between cognitive aspects and quantitative EEG in adults with epilepsy[J]. Clin EEG Neurosci, 2019, 50(5): 348-353. PMID: 30198328. DOI: 10.1177/1550059418793553.
14 林希, 曾甲斌, 陈丽婷, 等. 婴儿痉挛症经ACTH治疗发作控制后脑电图对于复发的预测价值[J]. 福建医科大学学报, 2021, 54(1): 33-35. DOI: 10.3969/j.issn.1672-4194.2021.01.007.
15 Riikonen RS. Favourable prognostic factors with infantile spasms[J]. Eur J Paediatr Neurol, 2010, 14(1): 13-18. PMID: 19362867. DOI: 10.1016/j.ejpn.2009.03.004.
16 Chen X, Yan CG. Hypostability in the default mode network and hyperstability in the frontoparietal control network of dynamic functional architecture during rumination[J]. Neuroimage, 2021, 241: 118427. PMID: 34311069. DOI: 10.1016/j.neuroimage.2021.118427.
17 李筱菁, 刘云青, 丁颖, 等. 多尺度样本熵对脑信号复杂度评估算法的修正[J]. 山东科技大学学报(自然科学版), 2023, 42(1): 110-117. DOI: 10.16452/j.cnki.sdkjzk.2023.01.012.
18 Puglia MP, Li D, Leis AM, et al. Neurophysiologic complexity in children increases with developmental age and is reduced by general anesthesia[J]. Anesthesiology, 2021, 135(5): 813-828. PMID: 34491305. DOI: 10.1097/ALN.0000000000003929.