极早产儿神经发育远期结局的研究进展

冯叶, 戴立英

中国当代儿科杂志 ›› 2023, Vol. 25 ›› Issue (10) : 1066-1071.

PDF(544 KB)
HTML
PDF(544 KB)
HTML
中国当代儿科杂志 ›› 2023, Vol. 25 ›› Issue (10) : 1066-1071. DOI: 10.7499/j.issn.1008-8830.2305072
综述

极早产儿神经发育远期结局的研究进展

  • 冯叶, 戴立英
作者信息 +

Recent research on the long-term neurodevelopmental outcomes of very preterm infants

  • FENG Ye, DAI Li-Ying
Author information +
文章历史 +

摘要

随着极早产儿存活率的提高,其伴随的神经发育远期结局日益受到关注。极早产儿易出现运动障碍及心理行为问题,主要包括脑性瘫痪、发育性协调障碍、孤独症谱系障碍、注意缺陷多动障碍、特定学习障碍、智力发育障碍等。改善极早产儿的远期预后至关重要,早期采取综合干预措施可最大程度地减轻伤残并达到优育效果。该文就极早产儿神经发育远期结局的研究进展作一综述。

Abstract

With the increase in the survival rate of very preterm infants, the long-term neurodevelopmental outcomes of such infants have attracted more and more attention. Very preterm infants tend to develop movement disorders and psychological and behavioral problems, including cerebral palsy, developmental coordination disorders, autism spectrum disorders, attention deficit hyperactivity disorders, specific learning disorders, and intellectual developmental disorders. It is of vital importance to improve the long-term prognosis of very preterm infants, and early comprehensive intervention measures can minimize disability and achieve optimal parenting outcomes. This article provides a review of the research progress on the long-term neurodevelopmental outcomes in extremely preterm infants.

关键词

神经发育 / 远期 / 结局 / 干预 / 极早产儿

Key words

Neurodevelopment / Long-term / Outcome / Intervention / Very preterm infant

引用本文

导出引用
冯叶, 戴立英. 极早产儿神经发育远期结局的研究进展[J]. 中国当代儿科杂志. 2023, 25(10): 1066-1071 https://doi.org/10.7499/j.issn.1008-8830.2305072
FENG Ye, DAI Li-Ying. Recent research on the long-term neurodevelopmental outcomes of very preterm infants[J]. Chinese Journal of Contemporary Pediatrics. 2023, 25(10): 1066-1071 https://doi.org/10.7499/j.issn.1008-8830.2305072

参考文献

1 Walani SR. Global burden of preterm birth[J]. Int J Gynaecol Obstet, 2020, 150(1): 31-33. PMID: 32524596. DOI: 10.1002/ijgo.13195.
2 Deng K, Liang J, Mu Y, et al. Preterm births in China between 2012 and 2018: an observational study of more than 9 million women[J]. Lancet Glob Health, 2021, 9(9): e1226-e1241. PMID: 34416213. PMCID: PMC8386289. DOI: 10.1016/S2214-109X(21)00298-9.
3 Cormack BE, Harding JE, Miller SP, et al. The influence of early nutrition on brain growth and neurodevelopment in extremely preterm babies: a narrative review[J]. Nutrients, 2019, 11(9): 2029. PMID: 31480225. PMCID: PMC6770288. DOI: 10.3390/nu11092029.
4 Motavaf M, Piao X. Oligodendrocyte development and implication in perinatal white matter injury[J]. Front Cell Neurosci, 2021, 15: 764486. PMID: 34803612. PMCID: PMC8599582. DOI: 10.3389/fncel.2021.764486.
5 王华倩, 姚宝珍. 早产儿神经发育特点及临床诊疗进展[J]. 中国儿童保健杂志, 2021, 29(8): 877-880. DOI: 10.11852/zgetbjzz2020-0849.
6 刘艳会, 钟庆华, 沈俊, 等. 早产儿脑损伤的危险因素分析[J]. 发育医学电子杂志, 2022, 10(2): 114-119. DOI: 10.3969/j.issn.2095-5340.2022.02.006.
7 Cerisola A, Baltar F, Ferrán C, et al. Mechanisms of brain injury of the premature baby[J]. Medicina (B Aires), 2019, 79 Suppl 3: 10-14. PMID: 31603836.
8 李慧玲, 闵双武, 司媛, 等. FMRP/mTOR信号级联失调与脑损伤早产儿远期神经发育的关系[J]. 中国医学创新, 2021, 18(34): 127-130. DOI: 10.3969/j.issn.1674-4985.2021.34.030.
9 Agut T, Alarcon A, Caba?as F, et al. Preterm white matter injury: ultrasound diagnosis and classification[J]. Pediatr Res, 2020, 87(Suppl 1): 37-49. PMID: 32218534. PMCID: PMC7098888. DOI: 10.1038/s41390-020-0781-1.
10 Ballabh P, de Vries LS. White matter injury in infants with intraventricular haemorrhage: mechanisms and therapies[J]. Nat Rev Neurol, 2021, 17(4): 199-214. PMID: 33504979. PMCID: PMC8880688. DOI: 10.1038/s41582-020-00447-8.
11 Dimitrova R, Pietsch M, Christiaens D, et al. Heterogeneity in brain microstructural development following preterm birth[J]. Cereb Cortex, 2020, 30(9): 4800-4810. PMID: 32306044. PMCID: PMC7391275. DOI: 10.1093/cercor/bhaa069.
12 姚妹, 毛姗姗. 早产儿脑损伤生物标志物的研究进展[J]. 中国当代儿科杂志, 2019, 21(11): 1138-1143. PMID: 31753098. PMCID: PMC7389299. DOI: 10.7499/j.issn.1008-8830.2019.11.015.
13 Coviello C, Perrone S, Buonocore G, et al. Isoprostanes as biomarker for white matter injury in extremely preterm infants[J]. Front Pediatr, 2020, 8: 618622. PMID: 33585368. PMCID: PMC7874160. DOI: 10.3389/fped.2020.618622.
14 Dibble M, Ang JZ, Mariga L, et al. Diffusion tensor imaging in very preterm, moderate-late preterm and term-born neonates: a systematic review[J]. J Pediatr, 2021, 232: 48-58.e3. PMID: 33453200. DOI: 10.1016/j.jpeds.2021.01.008.
15 Patel DR, Neelakantan M, Pandher K, et al. Cerebral palsy in children: a clinical overview[J]. Transl Pediatr, 2020, 9(Suppl 1): S125-S135. PMID: 32206590. PMCID: PMC7082248. DOI: 10.21037/tp.2020.01.01.
16 李晓捷, 邱洪斌, 姜志梅, 等. 中国十二省市小儿脑性瘫痪流行病学特征[J]. 中华实用儿科临床杂志, 2018, 33(5): 378-383. DOI: 10.3760/cma.j.issn.2095-428X.2018.05.013.
17 Pascal A, Govaert P, Oostra A, et al. Neurodevelopmental outcome in very preterm and very-low-birthweight infants born over the past decade: a meta-analytic review[J]. Dev Med Child Neurol, 2018, 60(4): 342-355. PMID: 29350401. DOI: 10.1111/dmcn.13675.
18 胡杰, 杨智强, 张晶晶, 等. 脑室周围白质软化症合并痉挛型脑瘫患儿脑灰质体积与运动功能的相关性[J]. 中国医学影像学杂志, 2022, 30(1): 12-16. DOI: 10.3969/j.issn.1005-5185.2022.01.003.
19 Paul S, Nahar A, Bhagawati M, et al. A review on recent advances of cerebral palsy[J]. Oxid Med Cell Longev, 2022, 2022: 2622310. PMID: 35941906. PMCID: PMC9356840. DOI: 10.1155/2022/2622310.
20 Sadowska M, Sarecka-Hujar B, Kopyta I. Analysis of selected risk factors depending on the type of cerebral palsy[J]. Brain Sci, 2021, 11(11): 1448. PMID: 34827447. PMCID: PMC8615573. DOI: 10.3390/brainsci11111448.
21 Messent P. DSM-5[J]. Clin Child Psychol Psychiatry, 2013, 18(4): 479-482. PMID: 24052569. DOI: 10.1177/1359104513502138.
22 Hua J, Barnett AL, Williams GJ, et al. Association of gestational age at birth with subsequent suspected developmental coordination disorder in early childhood in China[J]. JAMA Netw Open, 2021, 4(12): e2137581. PMID: 34905005. PMCID: PMC8672235. DOI: 10.1001/jamanetworkopen.2021.37581.
23 Zoia S, Biancotto M, Caravale B, et al. Early factors associated with risk of developmental coordination disorder in very preterm children: a prospective area-based cohort study in Italy[J]. Paediatr Perinat Epidemiol, 2022, 36(5): 683-695. PMID: 35437802. PMCID: PMC9546412. DOI: 10.1111/ppe.12878.
24 Lino F, Chieffo DPR. Developmental coordination disorder and most prevalent comorbidities: a narrative review[J]. Children (Basel), 2022, 9(7): 1095. PMID: 35884081. PMCID: PMC9317644. DOI: 10.3390/children9071095.
25 Emanuele M, Polletta G, Marini M, et al. Developmental coordination disorder: state of the art and future directions from a neurophysiological perspective[J]. Children (Basel), 2022, 9(7): 945. PMID: 35883929. PMCID: PMC9318843. DOI: 10.3390/children9070945.
26 Meachon EJ, Zemp M, Alpers GW. Developmental coordination disorder (DCD): relevance for clinical psychologists in Europe[J]. Clin Psychol Eur, 2022, 4(2): e4165. PMID: 36397944. PMCID: PMC9667416. DOI: 10.32872/cpe.4165.
27 Agrawal S, Rao SC, Bulsara MK, et al. Prevalence of autism spectrum disorder in preterm infants: a meta-analysis[J]. Pediatrics, 2018, 142(3): e20180134. PMID: 30076190. DOI: 10.1542/peds.2018-0134.
28 Chen LW, Wang ST, Wang LW, et al. Behavioral characteristics of autism spectrum disorder in very preterm birth children[J]. Mol Autism, 2019, 10: 32. PMID: 31367295. PMCID: PMC6647137. DOI: 10.1186/s13229-019-0282-4.
29 Lau WKW, Leung MK, Zhang R. Hypofunctional connectivity between the posterior cingulate cortex and ventromedial prefrontal cortex in autism: evidence from coordinate-based imaging meta-analysis[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2020, 103: 109986. PMID: 32473190. DOI: 10.1016/j.pnpbp.2020.109986.
30 Lee A, Choo H, Jeon B. Serotonin receptors as therapeutic targets for autism spectrum disorder treatment[J]. Int J Mol Sci, 2022, 23(12): 6515. PMID: 35742963. PMCID: PMC9223717. DOI: 10.3390/ijms23126515.
31 Faraone SV, Banaschewski T, Coghill D, et al. The World Federation of ADHD International Consensus Statement: 208 evidence-based conclusions about the disorder[J]. Neurosci Biobehav Rev, 2021, 128: 789-818. PMID: 33549739. PMCID: PMC8328933. DOI: 10.1016/j.neubiorev.2021.01.022.
32 Beer RJ, Cnattingius S, Susser ES, et al. Associations of preterm birth, small-for-gestational age, preeclampsia and placental abruption with attention-deficit/hyperactivity disorder in the offspring: nationwide cohort and sibling-controlled studies[J]. Acta Paediatr, 2022, 111(8): 1546-1555. PMID: 35485179. PMCID: PMC9544732. DOI: 10.1111/apa.16375.
33 Posner J, Polanczyk GV, Sonuga-Barke E. Attention-deficit hyperactivity disorder[J]. Lancet, 2020, 395(10222): 450-462. PMID: 31982036. PMCID: PMC7880081. DOI: 10.1016/S0140-6736(19)33004-1.
34 Velarde M, Cárdenas A. Autism spectrum disorder and attention-deficit/hyperactivity disorder: challenge in diagnosis and treatment[J]. Medicina (B Aires), 2022, 82 Suppl 3: 67-70. PMID: 36054861.
35 Bucci S, Bevilacqua F, De Marchis C, et al. Learning abilities in a population of Italian healthy preterm children at the end of primary school[J]. Int J Environ Res Public Health, 2020, 17(20): 7599. PMID: 33086703. PMCID: PMC7589140. DOI: 10.3390/ijerph17207599.
36 Grigorenko EL, Compton DL, Fuchs LS, et al. Understanding, educating, and supporting children with specific learning disabilities: 50 years of science and practice[J]. Am Psychol, 2020, 75(1): 37-51. PMID: 31081650. PMCID: PMC6851403. DOI: 10.1037/amp0000452.
37 Sanfilippo J, Ness M, Petscher Y, et al. Reintroducing dyslexia: early identification and implications for pediatric practice[J]. Pediatrics, 2020, 146(1): e20193046. PMID: 32576595. PMCID: PMC7329249. DOI: 10.1542/peds.2019-3046.
38 Michels L, Buechler R, Kucian K. Increased structural covariance in brain regions for number processing and memory in children with developmental dyscalculia[J]. J Neurosci Res, 2022, 100(2): 522-536. PMID: 34933406. PMCID: PMC9306474. DOI: 10.1002/jnr.24998.
39 Van Hoorn JF, Maathuis CG, Hadders-Algra M. Neural correlates of paediatric dysgraphia[J]. Dev Med Child Neurol, 2013, 55 Suppl 4: 65-68. PMID: 24237283. DOI: 10.1111/dmcn.12310.
40 Eves R, Mendon?a M, Baumann N, et al. Association of very preterm birth or very low birth weight with intelligence in adulthood: an individual participant data meta-analysis[J]. JAMA Pediatr, 2021, 175(8): e211058. PMID: 34047752. PMCID: PMC8329745. DOI: 10.1001/jamapediatrics.2021.1058.
41 Cho HJ, Jeong H, Park CA, et al. Altered functional connectivity in children born very preterm at school age[J]. Sci Rep, 2022, 12(1): 7308. PMID: 35508563. PMCID: PMC9068715. DOI: 10.1038/s41598-022-11184-x.
42 Twilhaar ES, Wade RM, de Kieviet JF, et al. Cognitive outcomes of children born extremely or very preterm since the 1990s and associated risk factors: a meta-analysis and meta-regression[J]. JAMA Pediatr, 2018, 172(4): 361-367. PMID: 29459939. PMCID: PMC5875339. DOI: 10.1001/jamapediatrics.2017.5323.
43 韩颖. 早产儿的神经发育[J]. 中国儿童保健杂志, 2020, 28(8): 837-840. DOI: 10.11852/zgetbjzz2020-1400.
44 Urbain C, Sato J, Hammill C, et al. Converging function, structure, and behavioural features of emotion regulation in very preterm children[J]. Hum Brain Mapp, 2019, 40(11): 3385-3397. PMID: 31056820. PMCID: PMC6865470. DOI: 10.1002/hbm.24604.
45 Albaugh MD, Ducharme S, Karama S, et al. Anxious/depressed symptoms are related to microstructural maturation of white matter in typically developing youths[J]. Dev Psychopathol, 2017, 29(3): 751-758. PMID: 27297294. DOI: 10.1017/S0954579416000444.
46 Jackman M, Sakzewski L, Morgan C, et al. Interventions to improve physical function for children and young people with cerebral palsy: international clinical practice guideline[J]. Dev Med Child Neurol, 2022, 64(5): 536-549. PMID: 34549424. DOI: 10.1111/dmcn.15055.
47 Doyle LW, Anderson PJ, Haslam R, et al. School-age outcomes of very preterm infants after antenatal treatment with magnesium sulfate vs placebo[J]. JAMA, 2014, 312(11): 1105-1113. PMID: 25226476. DOI: 10.1001/jama.2014.11189.
48 Natalucci G, Latal B, Koller B, et al. Effect of early prophylactic high-dose recombinant human erythropoietin in very preterm infants on neurodevelopmental outcome at 2 years: a randomized clinical trial[J]. JAMA, 2016, 315(19): 2079-2085. PMID: 27187300. DOI: 10.1001/jama.2016.5504.
49 Yates N, Gunn AJ, Bennet L, et al. Preventing brain injury in the preterm infant: current controversies and potential therapies[J]. Int J Mol Sci, 2021, 22(4): 1671. PMID: 33562339. PMCID: PMC7915709. DOI: 10.3390/ijms22041671.
50 张雁, 黄高贵, 吴丽云, 等. 高压氧治疗脑损伤合并视网膜病变婴幼儿的眼底随访观察[J]. 中国实用医药, 2022, 17(7): 66-68. DOI: 10.14163/j.cnki.11-5547/r.2022.07.022.
51 张璐璐, 尹向云, 姜红, 等. 氙气对脑白质损伤新生大鼠脑组织EphB4和EphrinB2 mRNA表达的影响[J]. 中华新生儿科杂志, 2018, 33(3): 214-218. DOI: 10.3760/cma.j.issn.2096-2932.2018.03.014.
52 孟甜甜, 王朝晖. 经颅磁刺激在神经发育障碍性疾病中的应用进展[J]. 中国儿童保健杂志, 2020, 28(3): 292-294. DOI: 10.11852/zgetbjzz2019-0175.
53 李佳敏, 徐纯鑫, 陈岑, 等. 经颅磁刺激在脑性瘫痪儿童运动功能障碍康复中的应用研究进展[J]. 中国康复医学杂志, 2022, 37(3): 416-420. DOI: 10.3969/j.issn.1001-1242.2022.03.024.
54 Vaes JEG, Kammen CM, Trayford C, et al. Intranasal mesenchymal stem cell therapy to boost myelination after encephalopathy of prematurity[J]. Glia, 2021, 69(3): 655-680. PMID: 33045105. PMCID: PMC7821154. DOI: 10.1002/glia.23919.
55 臧静, 栾佐, 王倩, 等. 两种干细胞经鼻移植治疗大鼠早产儿脑白质损伤[J]. 中国组织工程研究, 2021, 25(1): 101-107.

基金

中央医疗服务与保障能力提升项目(Z155080000004)。

PDF(544 KB)
HTML

Accesses

Citation

Detail

段落导航
相关文章

/