基于机器学习和儿童神经心理行为检查量表鉴别孤独症谱系障碍和全面发育迟缓儿童的研究

周刚, 张晓斌, 曲行达, 罗美芳, 彭琼玲, 马丽亚, 赵众

中国当代儿科杂志 ›› 2023, Vol. 25 ›› Issue (10) : 1028-1033.

PDF(648 KB)
HTML
PDF(648 KB)
HTML
中国当代儿科杂志 ›› 2023, Vol. 25 ›› Issue (10) : 1028-1033. DOI: 10.7499/j.issn.1008-8830.2306024
论著·临床研究

基于机器学习和儿童神经心理行为检查量表鉴别孤独症谱系障碍和全面发育迟缓儿童的研究

  • 周刚1, 张晓斌2, 曲行达1, 罗美芳3, 彭琼玲3, 马丽亚3, 赵众1
作者信息 +

Differential diagnosis of autism spectrum disorder and global developmental delay based on machine learning and Children Neuropsychological and Behavioral Scale

  • ZHOU Gang1, ZHANG Xiao-Bin2, QU Xing-Da1, LUO Mei-Fang3, PENG Qiong-Ling3, MA Li-Ya3, ZHAO Zhong1
Author information +
文章历史 +

摘要

目的 探索儿童神经心理行为检查量表2016版(以下简称“儿心量表”)鉴别孤独症谱系障碍(autism spectrum disorder, ASD)和全面发育迟缓(global developmental delay, GDD)的效能及其所需指标。 方法 回顾性选取18~48月龄的ASD(n=277)和GDD(n=415)患儿为研究对象,采用儿心量表评估两组儿童在大运动、精细运动、适应能力、语言、社会行为、警示行为6大能区的发育水平,并将获得的智龄和发育商(developmental quotient, DQ)共13个指标的数据作为特征,应用5种机器学习(machine learning, ML)分类器进行模型训练,计算各分类器对两组被试的分类准确度、灵敏度和特异度。 结果 警示行为DQ同时在5个分类器中作为第一个特征被选中,且在使用警示行为DQ单个特征时,分类准确度达到78.90%;当警示行为DQ与警示行为智龄、大运动智龄和语言能力智龄协同作用时,最高分类准确度为86.71%。 结论 ML结合儿心量表能有效区分ASD和GDD儿童;警示行为DQ在ML中起重要作用,而与其他特征联合能提高分类的准确度,对临床高效、准确鉴别ASD和GDD儿童有一定的提示意义和参考价值。

Abstract

Objective To investigate the efficacy and required indicators of Children Neuropsychological and Behavioral Scale-Revision 2016 (CNBS-R2016) in the differential diagnosis of autism spectrum disorder (ASD) and global developmental delay (GDD). Methods A total of 277 children with ASD and 415 children with GDD, aged 18-48 months, were enrolled as subjects. CNBS-R2016 was used to assess the developmental levels of six domains, i.e., gross motor, fine motor, adaptive ability, language, social behavior, and warning behavior, and a total of 13 indicators on intelligence age and developmental quotient (DQ) were obtained as the input features. Five commonly used machine learning classifiers were used for training to calculate the classification accuracy, sensitivity, and specificity of each classifier. Results DQ of warning behavior was selected as the first feature in all five classifiers, and the use of this indicator alone had a classification accuracy of 78.90%. When the DQ of warning behavior was used in combination with the intelligence age of warning behavior, gross motor, and language, it had the highest classification accuracy of 86.71%. Conclusions Machine learning combined with CNBS-R2016 can effectively distinguish children with ASD from those with GDD. The DQ of warning behavior plays an important role in machine learning, and its combination with other features can improve classification accuracy, providing a basis for the efficient and accurate differential diagnosis of ASD and GDD in clinical practice.

关键词

孤独症谱系障碍 / 全面发育迟缓 / 机器学习 / 儿童神经心理行为检查量表2016版 / 儿童

Key words

Autism spectrum disorder / Global developmental delay / Machine learning / Children Neuropsychological and Behavioral Scale-Revision 2016 / Child

引用本文

导出引用
周刚, 张晓斌, 曲行达, 罗美芳, 彭琼玲, 马丽亚, 赵众. 基于机器学习和儿童神经心理行为检查量表鉴别孤独症谱系障碍和全面发育迟缓儿童的研究[J]. 中国当代儿科杂志. 2023, 25(10): 1028-1033 https://doi.org/10.7499/j.issn.1008-8830.2306024
ZHOU Gang, ZHANG Xiao-Bin, QU Xing-Da, LUO Mei-Fang, PENG Qiong-Ling, MA Li-Ya, ZHAO Zhong. Differential diagnosis of autism spectrum disorder and global developmental delay based on machine learning and Children Neuropsychological and Behavioral Scale[J]. Chinese Journal of Contemporary Pediatrics. 2023, 25(10): 1028-1033 https://doi.org/10.7499/j.issn.1008-8830.2306024

参考文献

1 American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders[M]. 5th ed. Arlington, VA: American Psychiatric Association, 2013: 591-643.
2 张雅如, 邵智. 孤独症儿童语言障碍及其认知神经机制[J]. 中国妇幼保健, 2014, 29(4): 647-650.
3 Bhat AN, Landa RJ, Galloway JC. Current perspectives on motor functioning in infants, children, and adults with autism spectrum disorders[J]. Phys Ther, 2011, 91(7): 1116-1129. PMID: 21546566. DOI: 10.2522/ptj.20100294.
4 郭翠华, 静进. 婴幼儿孤独症谱系障碍的早期筛查工具(综述)[J]. 中国心理卫生杂志, 2017, 31(9): 704-709. DOI: 10.3969/j.issn.1000-6729.2017.09.007.
5 李瑞莉, 金春华, 张丽丽, 等. 《中国儿童发育量表》(4~6岁部分)信度与效度研究[J]. 中国儿童保健杂志, 2015, 23(9): 934-936. DOI: DOI: 10.11852/zgetbjzz2015-23-09-12.
6 张丽丽, 金春华, 李瑞莉, 等. 《中国儿童发育量表》北京地区常模(0~4岁部分)修订与信度分析[J]. 中国儿童保健杂志, 2015, 23(6): 573-576. DOI: 10.11852/zgetbjzz2015-23-06-05.
7 金春华. 儿童神经心理行为检查量表(2016版)[M]. 北京: 北京出版社, 2016.
8 罗美芳, 肖博, 赵晓丽, 等. 儿童神经心理行为检查量表2016版在孤独症谱系障碍幼儿中的临床应用[J]. 中国当代儿科杂志, 2020, 22(5): 494-498. PMID: 32434647. PMCID: PMC7389401. DOI: 10.7499/j.issn.1008-8830.2001035.
9 Ibrahim S, Djemal R, Alsuwailem A. Electroencephalography (EEG) signal processing for epilepsy and autism spectrum disorder diagnosis[J]. Biocybern Biomed Eng, 2018, 38(1): 16-26. DOI: 10.1016/j.bbe.2017.08.006.
10 Liu W, Li M, Yi L. Identifying children with autism spectrum disorder based on their face processing abnormality: a machine learning framework[J]. Autism Res, 2016, 9(8): 888-898. PMID: 27037971. DOI: 10.1002/aur.1615.
11 Duda M, Kosmicki JA, Wall DP. Testing the accuracy of an observation-based classifier for rapid detection of autism risk[J]. Transl Psychiatry, 2014, 4(8): e424. PMID: 25116834. PMCID: PMC4150240. DOI: 10.1038/tp.2014.65.
12 Wall DP, Kosmicki J, Deluca TF, et al. Use of machine learning to shorten observation-based screening and diagnosis of autism[J]. Transl Psychiatry, 2012, 2(4): e100. PMID: 22832900. PMCID: PMC3337074. DOI: 10.1038/tp.2012.10.
13 中华医学会儿科学分会神经学组, 中国医师协会神经内科分会儿童神经疾病专业委员会. 儿童智力障碍或全面发育迟缓病因诊断策略专家共识[J]. 中华儿科杂志, 2018, 56(11): 806-810. PMID: 30392203. DOI: 10.3760/cma.j.issn.0578-1310.2018.11.003.
14 辛志宇, 林莉. 家庭环境因素对儿童语言发育影响的调查研究[J]. 中国医药科学, 2021, 11(18): 168-170. DOI: 10.3969/j.issn.2095-0616.2021.18.043.
15 Chen S, Zhao J, Hu X, et al. Children Neuropsychological and Behavioral Scale-Revision 2016 in the early detection of autism spectrum disorder[J]. Front Psychiatry, 2022, 13: 893226. PMID: 35935438. PMCID: PMC9354041. DOI: 10.3389/fpsyt.2022.893226.
16 田戈. 儿童孤独症发病因素分析[J]. 临床医药文献电子杂志, 2015, 2(10): 1879-1880. DOI: 10.16281/j.cnki.jocml.2015.10.081.
17 Crippa A, Salvatore C, Perego P, et al. Use of machine learning to identify children with autism and their motor abnormalities[J]. J Autism Dev Disord, 2015, 45(7): 2146-2156. PMID: 25652603. DOI: 10.1007/s10803-015-2379-8.
18 Li B, Sharma A, Meng J, et al. Applying machine learning to identify autistic adults using imitation: an exploratory study[J]. PLoS One, 2017, 12(8): e0182652. PMID: 28813454. PMCID: PMC5558936. DOI: 10.1371/journal.pone.0182652.

基金

国家自然科学基金面上项目(82171539)。

PDF(648 KB)
HTML

Accesses

Citation

Detail

段落导航
相关文章

/