目的 探讨支气管肺泡灌洗液(bronchial alveolar lavage fluid, BALF)宏基因组二代测序(metagenomic next-generation sequencing, mNGS)在儿童难治性肺炎(refractory pneumonia, RTP)病原学诊断及治疗中的临床应用。 方法 回顾性选取2020年1月—2023年3月内蒙古自治区妇幼保健院儿内科收治的RTP患儿160例为研究对象,根据是否进行mNGS检测分为mNGS组(80例)和传统检测组(80例)。两组患儿入院后均予完善炎症指标检测及传统病原学检测。传统病原学检测包括:微生物培养(吸痰管采集痰液标本)、呼吸道病原核酸检测、血清学检测(支原体、结核、真菌)。mNGS组完善支气管镜检查后留取BALF标本同时送检mNGS和微生物培养。分析比较两组病原体检出情况及治疗情况。 结果 mNGS组较传统检测组病原体检出率更高(92% vs 58%,P<0.05),且检出病原体种类更多,对混合感染的诊断率更高。mNGS组治疗总体有效率高于传统检测组,住院期间并发症发生率低于传统检测组(P<0.05)。mNGS组中68例患儿根据mNGS结果调整治疗,调整后总体有效率为96%(65/68)。 结论 相对于传统病原学检测,BALF mNGS可显著提高病原体检出率,可发现部分少见病原体,临床工作中当RTP患儿诊疗过程中遇到瓶颈时应尽早完善mNGS明确病原。
Abstract
Objective To investigate the clinical application of metagenomic next-generation sequencing (mNGS) of bronchoalveolar lavage fluid (BALF) in the etiological diagnosis and treatment of refractory pneumonia (RTP) in children. Methods A retrospective analysis was performed on 160 children with RTP who were admitted to the Department of Pediatric Internal Medicine, Maternal and Child Health Hospital of Inner Mongolia Autonomous Region, from January 2020 to March 2023. According to whether mNGS was performed, they were divided into two groups: mNGS (n=80) and traditional testing (n=80). All children received the tests of inflammatory markers and pathogen tests after admission. Traditional pathogenicity tests included microbial culture (sputum specimen collected by suction tube), nucleic acid detection of respiratory pathogens, and serological test (mycoplasma, tuberculosis, and fungi). For the mNGS group, BALF specimens were collected after bronchoscopy and were sent to the laboratory for mNGS and microbial culture. The two groups were analyzed and compared in terms of the detection of pathogens and treatment. Results Compared with the traditional testing group, the mNGS group had a significantly higher detection rate of pathogens (92% vs 58%, P<0.05), with more types of pathogens and a higher diagnostic rate of mixed infections. Compared with the traditional testing group, the mNGS group had a significantly higher treatment response rate and a significantly lower incidence rate of complications during hospitalization (P<0.05). Treatment was adjusted for 68 children in the mNGS group according to the results of mNGS, with a treatment response rate of 96% (65/68) after adjustment. Conclusions Compared with traditional pathogen tests, BALF mNGS can significantly improve the detection rate of pathogens and find some rare pathogens. In clinical practice, when encountering bottlenecks during the diagnosis and treatment of children with RTP, it is advisable to promptly perform the mNGS to identify the pathogens.
关键词
难治性肺炎 /
支气管肺泡灌洗液 /
宏基因组二代测序 /
儿童
Key words
Refractory pneumonia /
Bronchoalveolar lavage fluid /
Metagenomic next-generation sequencing /
Child
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
1 Fang Z, Lin S, Luo S, et al. Meta-analysis and systematic review of electronic bronchoscopy in refractory pneumonia[J]. Ann Palliat Med, 2021, 10(9): 9889-9901. PMID: 34628915. DOI: 10.21037/apm-21-2133.
2 国家卫生健康委员会人才交流服务中心儿科呼吸内镜诊疗技术项目专家组, 中国医师协会儿科医师分会内镜专业委员会, 中国医师协会内镜医师分会儿科呼吸内镜专业委员会, 等. 中国儿童难治性肺炎呼吸内镜介入诊疗专家共识[J]. 中国实用儿科杂志, 2019, 34(6): 449-457. DOI: 10.19538/j.ek2019060601.
3 Chiu CY, Miller SA. Clinical metagenomics[J]. Nat Rev Genet, 2019, 20(6): 341-355. PMID: 30918369. PMCID: PMC6858796. DOI: 10.1038/s41576-019-0113-7.
4 谢正德, 邓继岿, 任丽丽, 等. 儿童呼吸道感染病原体核酸检测专家共识[J]. 中华实用儿科临床杂志, 2022, 37(5): 321-332. DOI: 10.3760/cma.j.cn101070-20211222-01490.
5 徐放, 申阿东. 宏基因组测序在儿童呼吸道感染性疾病研究中的应用[J]. 中华实用儿科临床杂志, 2020, 35(10): 783-786. DOI: 10.3760/cma.j.cn101070-20200413-00629.
6 Gu W, Miller S, Chiu CY. Clinical metagenomic next-generation sequencing for pathogen detection[J]. Annu Rev Pathol, 2019, 14: 319-338. PMID: 30355154. PMCID: PMC6345613. DOI: 10.1146/annurev-pathmechdis-012418-012751.
7 杨家武, 赵亮, 刘海沣, 等. 支气管肺泡灌洗液基因芯片法病原体检测对难治性肺炎患儿的病原学诊断意义[J]. 中华实用儿科临床杂志, 2023, 38(4): 281-285. DOI: 10.3760/cma.j.cn101070-20220807-00947.
8 常文娇, 马筱玲. 儿童呼吸道感染常见病原体的实验室检测[J]. 中华检验医学杂志, 2021, 44(4): 274-279. DOI: 10.3760/cma.j.cn114452-20210129-00077.
9 Simner PJ, Miller S, Carroll KC. Understanding the promises and hurdles of metagenomic next-generation sequencing as a diagnostic tool for infectious diseases[J]. Clin Infect Dis, 2018, 66(5): 778-788. PMID: 29040428. PMCID: PMC7108102. DOI: 10.1093/cid/cix881.
10 周永召, 陆思芬, 刘丹, 等. 宏基因组高通量测序技术能够引领呼吸感染性疾病迈进精准医学时代吗?[J]. 中国呼吸与危重监护杂志, 2022, 21(2): 137-141. DOI: 10.7507/1671-6205.202202029.
11 何邦立, 林亚发, 符名勇, 等. 宏基因二代测序技术检测不明原因肺部感染病原体的临床应用价值[J]. 中华医院感染学杂志, 2023, 33(7): 1001-1005. DOI: 10.11816/cn.ni.2023-221089.
12 唐青, 辛丽红, 康媛洁. 肺泡灌洗液宏基因二代测序在儿童重症肺炎病原诊断中的价值[J]. 临床医学研究与实践, 2023, 8(1): 92-96. DOI: 10.19347/j.cnki.2096-1413.202301025.
13 Chen J, Zhao Y, Shang Y, et al. The clinical significance of simultaneous detection of pathogens from bronchoalveolar lavage fluid and blood samples by metagenomic next-generation sequencing in patients with severe pneumonia[J]. J Med Microbiol, 2021, 70(1): 001259. PMID: 33231537. DOI: 10.1099/jmm.0.001259.
14 任小宏, 代继宏. 宏基因二代测序技术在支气管肺泡灌洗液病原检测中的临床应用[J]. 临床肺科杂志, 2022, 27(7): 1046-1050. DOI: 10.3969/j.issn.1009-6663.2022.07.014.
15 Huang J, Jiang E, Yang D, et al. Metagenomic next-generation sequencing versus traditional pathogen detection in the diagnosis of peripheral pulmonary infectious lesions[J]. Infect Drug Resist, 2020, 13: 567-576. PMID: 32110067. PMCID: PMC7036976. DOI: 10.2147/IDR.S235182.
16 Miao Q, Ma Y, Wang Q, et al. Microbiological diagnostic performance of metagenomic next-generation sequencing when applied to clinical practice[J]. Clin Infect Dis, 2018, 67(suppl_2): S231-S240. PMID: 30423048. DOI: 10.1093/cid/ciy693.
17 Wallihan R, Ramilo O. Community-acquired pneumonia in children: current challenges and future directions[J]. J Infect, 2014, 69(Suppl 1): S87-S90. PMID: 25264163. DOI: 10.1016/j.jinf.2014.07.021.
18 中国重症社区获得性肺炎研究协作组. 重症社区获得性肺炎患者支气管肺泡灌洗液的宏基因组测序结果临床判读指导原则[J]. 国际呼吸杂志, 2023, 43(1): 7-14. DOI: 10.3760/cma.j.cn131368-20220715-00611.
19 Koltsida G, Zaoutis T. Fungal lung disease[J]. Paediatr Respir Rev, 2021, 37: 99-104. PMID: 32527608. DOI: 10.1016/j.prrv.2020.04.009.
20 贾建超, 贾建敏, 刘姿, 等. 宏基因组学二代测序技术对重症肺炎真菌感染诊断价值[J]. 中华实用诊断与治疗杂志, 2020, 34(10): 1023-1025. DOI: 10.13507/j.issn.1674-3474.2020.10.014.
21 崔凤婷, 付丽娜, 吴娅娜. 肺泡灌洗液病原微生物宏基因检测在儿童重症肺炎治疗中的临床应用分析[J]. 标记免疫分析与临床, 2021, 28(8): 1333-1337. DOI: 10.11748/bjmy.issn.1006-1703.2021.08.016.
22 钮月英, 吴晓虹, 应可净. 肺泡灌洗液宏基因二代测序技术对下呼吸道感染病原体检测的优势[J]. 中国实用内科杂志, 2020, 40(9): 754-758. DOI: 10.19538/j.nk2020090111.
基金
内蒙古自治区卫生科技计划项目(202201132)。