功能磁共振评估宫内发育迟缓仔鼠肾脏微观结构及灌注改变

梁灿, 李莹, 贺晓日

中国当代儿科杂志 ›› 2024, Vol. 26 ›› Issue (3) : 289-296.

PDF(1570 KB)
HTML
PDF(1570 KB)
HTML
中国当代儿科杂志 ›› 2024, Vol. 26 ›› Issue (3) : 289-296. DOI: 10.7499/j.issn.1008-8830.2309004
论著·实验研究

功能磁共振评估宫内发育迟缓仔鼠肾脏微观结构及灌注改变

  • 梁灿1,2, 李莹1,2, 贺晓日1
作者信息 +

Functional MRI assessment of microstructural and perfusion changes in the kidneys of rats with intrauterine growth restriction

  • LIANG Can, LI Ying, HE Xiao-Ri
Author information +
文章历史 +

摘要

目的 探讨体素内不相干运动(intravoxel incoherent motion, IVIM)、纵向弛豫时间定量成像(T1 mapping)、横向弛豫时间定量成像(T2 mapping)等功能磁共振成像技术评估宫内发育迟缓(intrauterine growth restriction, IUGR)仔鼠的肾脏微观结构及灌注改变的价值。 方法 通过孕期低蛋白饮食法建立IUGR仔鼠模型。低蛋白饮食孕鼠所产仔鼠随机分为IUGR 8周组、IUGR 12周组,正常饮食孕鼠所产仔鼠随机分为正常8周组、正常12周组,各组n=8。比较各组仔鼠肾脏皮质、髓质的表观弥散系数(apparent diffusion coefficient, ADC)、真实扩散系数(Dt)、伪扩散系数(D*)、灌注分数(f)、T1值、T2值,以及血肌酐、血尿素氮水平。 结果 IUGR 12周组肾脏髓质Dt值高于IUGR 8周组,IUGR 12周组肾脏髓质D*值低于正常12周组与IUGR 8周组(P<0.05);IUGR 8周组肾脏髓质T1值高于皮质,IUGR 12周组肾脏髓质T1值高于IUGR 8周组与正常12周组,IUGR 12周组肾脏皮质T1值高于正常12周组(P<0.05);各组内肾脏髓质T2值均高于皮质(P<0.05),各组间肾脏皮质及髓质的T2值比较差异均无统计学意义(P>0.05)。各组血肌酐及血尿素氮含量比较差异无统计学意义(P>0.05)。IUGR 8周组仔鼠肾脏可见肾小球增生肥大,未见明显纤维化改变;IUGR 12周组仔鼠肾脏可见肾小球萎缩,囊腔狭窄,间质出现炎性细胞浸润及纤维化。 结论 IVIM磁共振成像可用于评估及动态观察IUGR仔鼠肾脏微观结构及灌注损伤,T1 mapping磁共振成像可用于评估IUGR仔鼠肾脏损伤,T1 mapping联合T2 mapping磁共振成像可进一步分辨IUGR仔鼠的肾脏纤维化。

Abstract

Objective To explore the value of functional magnetic resonance imaging (MRI) techniques, including intravoxel incoherent motion (IVIM), T1 mapping, and T2 mapping, in assessing the microstructural and perfusion changes in the kidneys of rats with intrauterine growth restriction (IUGR). Methods An IUGR rat model was established through a low-protein diet during pregnancy. Offspring from pregnant rats on a low-protein diet were randomly divided into an IUGR 8-week group and an IUGR 12-week group, while offspring from pregnant rats on a normal diet were divided into a normal 8-week group and a normal 12-week group (n=8 for each group). The apparent diffusion coefficient (ADC), true diffusion coefficient (Dt), pseudo-diffusion coefficient (D*), perfusion fraction (f), T1 value, and T2 value of the renal cortex and medulla were compared, along with serum creatinine and blood urea nitrogen levels among the groups. Results The Dt value in the renal medulla was higher in the IUGR 12-week group than in the IUGR 8-week group, and the D* value in the renal medulla was lower in the IUGR 12-week group than in both the normal 12-week group and the IUGR 8-week group (P<0.05). The T1 value in the renal medulla was higher than in the cortex in the IUGR 8-week group, and the T1 value in the renal medulla was higher in the IUGR 12-week group than in both the IUGR 8-week group and the normal 12-week group, with the cortical T1 value in the IUGR 12-week group also being higher than that in the normal 12-week group (P<0.05). The T2 values in the renal medulla were higher than those in the cortex across all groups (P<0.05). There were no significant differences in the T2 values of either the cortex or medulla among the groups (P>0.05). There were no significant differences in serum creatinine and blood urea nitrogen levels among the groups (P>0.05). Glomerular hyperplasia and hypertrophy without significant fibrotic changes were observed in the IUGR 8-week group, whereas glomerular atrophy, cystic stenosis, and interstitial inflammatory infiltration and fibrosis were seen in the IUGR 12-week group. Conclusions IVIM MRI can be used to assess and dynamically observe the microstructural and perfusion damage in the kidneys of IUGR rats. MRI T1 mapping can be used to evaluate kidney damage in IUGR rats, and the combination of MRI T1 mapping and T2 mapping can further differentiate renal fibrosis in IUGR rats.

关键词

宫内发育迟缓 / 肾脏 / 体素内不相关运动 / 纵向弛豫时间定量成像 / 横向弛豫时间定量成像 / 功能磁共振 / 大鼠

Key words

Intrauterine growth restriction / Kidney / Intravoxel incoherent motion / T1 mapping / T2 mapping / Functional magnetic resonance imaging / Rat

引用本文

导出引用
梁灿, 李莹, 贺晓日. 功能磁共振评估宫内发育迟缓仔鼠肾脏微观结构及灌注改变[J]. 中国当代儿科杂志. 2024, 26(3): 289-296 https://doi.org/10.7499/j.issn.1008-8830.2309004
LIANG Can, LI Ying, HE Xiao-Ri. Functional MRI assessment of microstructural and perfusion changes in the kidneys of rats with intrauterine growth restriction[J]. Chinese Journal of Contemporary Pediatrics. 2024, 26(3): 289-296 https://doi.org/10.7499/j.issn.1008-8830.2309004

参考文献

1 Liu J, Wang XF, Wang Y, et al. The incidence rate, high-risk factors, and short- and long-term adverse outcomes of fetal growth restriction: a report from China Mainland[J]. Medicine (Baltimore), 2014, 93(27): e210. PMID: 25501078. PMCID: PMC4602786. DOI: 10.1097/MD.0000000000000210.
2 Zohdi V, Lim K, Pearson JT, et al. Developmental programming of cardiovascular disease following intrauterine growth restriction: findings utilising a rat model of maternal protein restriction[J]. Nutrients, 2014, 7(1): 119-152. PMID: 25551250. PMCID: PMC4303830. DOI: 10.3390/nu7010119.
3 Murano Y, Nishizaki N, Endo A, et al. Evaluation of kidney dysfunction and angiotensinogen as an early novel biomarker of intrauterine growth restricted offspring rats[J]. Pediatr Res, 2015, 78(6): 678-682. PMID: 26270574. DOI: 10.1038/pr.2015.153.
4 朱婧, 邢燕. 宫内发育迟缓对肾脏结构及功能的影响[J]. 中华儿科杂志, 2016, 54(11): 872-874. PMID: 27806803. DOI: 10.3760/cma.j.issn.0578-1310.2016.11.021.
5 Murano Y, Shoji H, Hara T, et al. Long-term renal tubular damage in intrauterine growth-restricted rats[J]. Pediatr Int, 2018, 60(6): 565-568. PMID: 29575245. DOI: 10.1111/ped.13570.
6 Kanda T, Murai-Takeda A, Kawabe H, et al. Low birth weight trends: possible impacts on the prevalences of hypertension and chronic kidney disease[J]. Hypertens Res, 2020, 43(9): 859-868. PMID: 32393862. DOI: 10.1038/s41440-020-0451-z.
7 White SL, Perkovic V, Cass A, et al. Is low birth weight an antecedent of CKD in later life? A systematic review of observational studies[J]. Am J Kidney Dis, 2009, 54(2): 248-261. PMID: 19339091. DOI: 10.1053/j.ajkd.2008.12.042.
8 Grandi C. Alterations in fetal kidney development and increased risk for adult diseases[J]. Arch Argent Pediatr, 2021, 119(5): e480-e486. PMID: 34569748. DOI: 10.5546/aap.2021.eng.e480.
9 Ebrahimi B, Textor SC, Lerman LO. Renal relevant radiology: renal functional magnetic resonance imaging[J]. Clin J Am Soc Nephrol, 2014, 9(2): 395-405. PMID: 24370767. PMCID: PMC3913228. DOI: 10.2215/CJN.02900313.
10 Ljimani A, Caroli A, Laustsen C, et al. Consensus-based technical recommendations for clinical translation of renal diffusion-weighted MRI[J]. MAGMA, 2020, 33(1): 177-195. PMID: 31676990. PMCID: PMC7021760. DOI: 10.1007/s10334-019-00790-y.
11 Zhou JY, Wang YC, Zeng CH, et al. Renal functional MRI and its application[J]. J Magn Reson Imaging, 2018, 48(4): 863-881. PMID: 30102436. DOI: 10.1002/jmri.26180.
12 Mao W, Zhou J, Zeng M, et al. Intravoxel incoherent motion diffusion-weighted imaging for the assessment of renal fibrosis of chronic kidney disease: a preliminary study[J]. Magn Reson Imaging, 2018, 47: 118-124. PMID: 29217491. DOI: 10.1016/j.mri.2017.12.010.
13 郑在琼, 王登伟, 李欢, 等. 磁共振弥散加权成像技术、体素内不相干运动磁共振成像技术在糖尿病肾病诊断中的应用研究进展[J]. 临床肾脏病杂志, 2020, 20(10): 838-842. DOI: 10.3969/j.issn.1671-2390.2020.10.014.
14 Zhang H, Wang P, Shi D, et al. Capability of intravoxel incoherent motion and diffusion tensor imaging to detect early kidney injury in type 2 diabetes[J]. Eur Radiol, 2022, 32(5): 2988-2997. PMID: 35031840. DOI: 10.1007/s00330-021-08415-6.
15 Liang P, Chen Y, Li S, et al. Noninvasive assessment of kidney dysfunction in children by using blood oxygenation level-dependent MRI and intravoxel incoherent motion diffusion-weighted imaging[J]. Insights Imaging, 2021, 12(1): 146. PMID: 34674043. PMCID: PMC8531182. DOI: 10.1186/s13244-021-01091-6.
16 Wolf M, de Boer A, Sharma K, et al. Magnetic resonance imaging T1- and T2-mapping to assess renal structure and function: a systematic review and statement paper[J]. Nephrol Dial Transplant, 2018, 33(suppl_2): ii41-ii50. PMID: 30137583. PMCID: PMC6106643. DOI: 10.1093/ndt/gfy198.
17 Hueper K, Rong S, Gutberlet M, et al. T2 relaxation time and apparent diffusion coefficient for noninvasive assessment of renal pathology after acute kidney injury in mice: comparison with histopathology[J]. Invest Radiol, 2013, 48(12): 834-842. PMID: 23907103. DOI: 10.1097/RLI.0b013e31829d0414.
18 Hueper K, Peperhove M, Rong S, et al. T1-mapping for assessment of ischemia-induced acute kidney injury and prediction of chronic kidney disease in mice[J]. Eur Radiol, 2014, 24(9): 2252-2260. PMID: 24996794. DOI: 10.1007/s00330-014-3250-6.
19 Dekkers IA, de Boer A, Sharma K, et al. Consensus-based technical recommendations for clinical translation of renal T1 and T2 mapping MRI[J]. MAGMA, 2020, 33(1): 163-176. PMID: 31758418. PMCID: PMC7021750. DOI: 10.1007/s10334-019-00797-5.
20 Rankin AJ, Mayne K, Allwood‐Spiers S, et al. Will advances in functional renal magnetic resonance imaging translate to the nephrology clinic?[J]. Nephrology (Carlton), 2022, 27(3): 223-230. PMID: 34724286. DOI: 10.1111/nep.13985.
21 高琳琳, 王军, 李子英, 等. 不同方法制备大鼠宫内发育迟缓模型的比较[J]. 中国比较医学杂志, 2018, 28(1): 1-7. DOI: 10.3969/j.issn.1671-7856.2018.01.001.
22 He X, Xie Z, Dong Q, et al. Dynamic p53 protein expression and phosphorylation in the kidneys of rats that experienced intrauterine growth restriction[J]. Ren Fail, 2015, 37(5): 896-902. PMID: 25721428. DOI: 10.3109/0886022X.2015.1015428.
23 DuPriest E, Hebert J, Morita M, et al. Fetal renal DNA methylation and developmental programming of stress-induced hypertension in growth-restricted male mice[J]. Reprod Sci, 2020, 27(5): 1110-1120. PMID: 32046425. PMCID: PMC7539823. DOI: 10.1007/s43032-019-00121-5.
24 郭嫱, 王帅, 霍鹏飞, 等. 急性肾损伤相关生物标志物的临床研究进展[J]. 中国实验诊断学, 2022, 26(4): 620-622. DOI: 10.3969/j.issn.1007-4287.2022.04.043.
25 陈丽华. 多b值DWI及DKI直方图分析评估大鼠肾脏冷缺血再灌注损伤[D]. 天津: 天津医科大学, 2020.
26 Carmody JB, Charlton JR. Short-term gestation, long-term risk: prematurity and chronic kidney disease[J]. Pediatrics, 2013, 131(6): 1168-1179. PMID: 23669525. DOI: 10.1542/peds.2013-0009.
27 陈径, 徐虹, 沈茜, 等. 宫内发育迟缓对大鼠血压及肾功能影响[J]. 中华肾脏病杂志, 2006, 22(11): 706-707. DOI: 10.3760/j.issn:1001-7097.2006.11.017.
28 Ruster M, Sommer M, Stein G, et al. Renal angiotensin receptor type 1 and 2 upregulation in intrauterine growth restriction of newborn piglets[J]. Cells Tissues Organs, 2006, 182(2): 106-114. PMID: 16804301. DOI: 10.1159/000093065.
29 Oostendorp M, de Vries EE, Slenter JM, et al. MRI of renal oxygenation and function after normothermic ischemia-reperfusion injury[J]. NMR Biomed, 2011, 24(2): 194-200. PMID: 20954164. DOI: 10.1002/nbm.1572.
30 Cox EF, Buchanan CE, Bradley CR, et al. Multiparametric renal magnetic resonance imaging: validation, interventions, and alterations in chronic kidney disease[J]. Front Physiol, 2017, 8: 696. PMID: 28959212. PMCID: PMC5603702. DOI: 10.3389/fphys.2017.00696.
31 Buchanan CE, Mahmoud H, Cox EF, et al. Quantitative assessment of renal structural and functional changes in chronic kidney disease using multi-parametric magnetic resonance imaging[J]. Nephrol Dial Transplant, 2020, 35(6): 955-964. PMID: 31257440. PMCID: PMC7282828. DOI: 10.1093/ndt/gfz129.
32 Pruijm M, Milani B, Pivin E, et al. Reduced cortical oxygenation predicts a progressive decline of renal function in patients with chronic kidney disease[J]. Kidney Int, 2018, 93(4): 932-940. PMID: 29325997. DOI: 10.1016/j.kint.2017.10.020.
33 Schmidbauer M, Rong S, Gutberlet M, et al. Diffusion-weighted imaging and mapping of T1 and T2 relaxation time for evaluation of chronic renal allograft rejection in a translational mouse model[J]. J Clin Med, 2021, 10(19): 4318. PMID: 34640336. PMCID: PMC8509284. DOI: 10.3390/jcm10194318.
34 Kim SY, Kim H, Lee J, et al. Quantitative magnetic resonance imaging of chronic kidney disease: an experimental in vivo study using rat chronic kidney disease models[J]. Acta Radiol, 2023, 64(1): 404-414. PMID: 34928730. DOI: 10.1177/02841851211065143.

基金

湖南省自然科学基金(2020JJ4785);澳优食品与营养科学研究基金项目(AU-YJY-B-LX-20-022)。

PDF(1570 KB)
HTML

Accesses

Citation

Detail

段落导航
相关文章

/