氧化应激在注意缺陷多动障碍发病机制中的研究进展

吴晨蕾, 王孟飞, 周荣易

中国当代儿科杂志 ›› 2024, Vol. 26 ›› Issue (2) : 201-206.

PDF(561 KB)
PDF(561 KB)
中国当代儿科杂志 ›› 2024, Vol. 26 ›› Issue (2) : 201-206. DOI: 10.7499/j.issn.1008-8830.2309039
综述

氧化应激在注意缺陷多动障碍发病机制中的研究进展

  • 吴晨蕾1,2, 王孟飞1,2, 周荣易1,2
作者信息 +

Recent research on the role of oxidative stress in the pathogenesis of attention deficit hyperactivity disorder

  • WU Chen-Lei, WANG Meng-Fei, ZHOU Rong-Yi
Author information +
文章历史 +

摘要

注意缺陷多动障碍(attention deficit hyperactivity disorder, ADHD)是儿童和青少年常见的神经发育障碍性疾病,病因及发病机制尚不明确。脑是人体耗氧量最大的器官,极易受到氧化失衡的影响,因此氧化应激成为ADHD发病机制的重点研究方向,但目前国内尚缺乏相关研究。该文综述氧化应激参与ADHD的临床研究及实验研究最新成果,并探索ADHD发病机制研究中氧化应激与神经递质失调、神经炎症及细胞凋亡等假说之间的内在关联,为探索ADHD的发病机制提供新的研究思路。

Abstract

Attention deficit hyperactivity disorder (ADHD) is a common neurodevelopmental disorder in children and adolescents, and its etiology and pathogenesis are still unclear. Brain is the organ with the largest oxygen consumption in human body and is easily affected by oxidative imbalance. Oxidative stress has become the key research direction for the pathogenesis of ADHD, but there is still a lack of relevant studies in China. Based on the latest research findings in China and overseas, this article reviews the clinical and experimental studies on oxidative stress in ADHD and explores the association of oxidative stress with neurotransmitter imbalance, neuroinflammation, and cell apoptosis in the pathogenesis of ADHD, so as to provide new research ideas for exploring the pathogenesis of ADHD.

关键词

注意缺陷多动障碍 / 氧化应激 / 神经递质 / 神经炎症 / 细胞凋亡

Key words

Attention deficit hyperactivity disorder / Oxidative stress / Neurotransmitter / Neuroinflammation / Cell apoptosis

引用本文

导出引用
吴晨蕾, 王孟飞, 周荣易. 氧化应激在注意缺陷多动障碍发病机制中的研究进展[J]. 中国当代儿科杂志. 2024, 26(2): 201-206 https://doi.org/10.7499/j.issn.1008-8830.2309039
WU Chen-Lei, WANG Meng-Fei, ZHOU Rong-Yi. Recent research on the role of oxidative stress in the pathogenesis of attention deficit hyperactivity disorder[J]. Chinese Journal of Contemporary Pediatrics. 2024, 26(2): 201-206 https://doi.org/10.7499/j.issn.1008-8830.2309039

参考文献

1 Wang TT, Liu KH, Li ZZ, et al. Prevalence of attention deficit/hyperactivity disorder among children and adolescents in China: a systematic review and meta-analysis[J]. BMC Psychiatry, 2017, 17(1): 32. PMID: 28103833. PMCID: PMC5244567. DOI: 10.1186/s12888-016-1187-9.
2 Oyefeso FA, Muotri AR, Wilson CG, et al. Brain organoids: a promising model to assess oxidative stress-induced central nervous system damage[J]. Dev Neurobiol, 2021, 81(5): 653-670. PMID: 33942547. PMCID: PMC8364474. DOI: 10.1002/dneu.22828.
3 Lushchak VI. Interplay between bioenergetics and oxidative stress at normal brain aging. Aging as a result of increasing disbalance in the system oxidative stress-energy provision[J]. Pflugers Arch, 2021, 473(5): 713-722. PMID: 33599804. DOI: 10.1007/s00424-021-02531-4.
4 Azzi A. Oxidative stress: what is it? can it be measured? where is it located? can it be good or bad? can it be prevented? can it be cured?[J]. Antioxidants (Basel), 2022, 11(8): 1431. PMID: 35892633. PMCID. PMC9329886. DOI: 10.3390/antiox11081431.
5 Hassan W, Noreen H, Rehman S, et al. Association of oxidative stress with neurological disorders[J]. Curr Neuropharmacol, 2022, 20(6): 1046-1072. PMID: 34781871. PMCID: PMC9886831. DOI: 10.2174/1570159X19666211111141246.
6 Sies H, Jones DP. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents[J]. Nat Rev Mol Cell Biol, 2020, 21(7): 363-383. PMID: 34781871. PMID: 32231263. DOI: 10.1038/s41580-020-0230-3.
7 Demirci-?eki? S, ?zkan G, Avan AN, et al. Biomarkers of oxidative stress and antioxidant defense[J]. J Pharm Biomed Anal, 2022, 209: 114477. PMID: 34920302. DOI: 10.1016/j.jpba.2021.114477.
8 Teleanu DM, Niculescu AG, Lungu II, et al. An overview of oxidative stress, neuroinflammation, and neurodegenerative diseases[J]. Int J Mol Sci, 2022, 23(11): 5938. PMID: 35682615. PMCID: PMC9180653. DOI: 10.3390/ijms23115938.
9 Corona JC. Role of oxidative stress and neuroinflammation in attention-deficit/hyperactivity disorder[J]. Antioxidants (Basel), 2020, 9(11): 1039.PMID: 33114154. PMCID: PMC7690797. DOI: 10.3390/antiox9111039.
10 Kul M, Unal F, Kandemir H, et al. Evaluation of oxidative metabolism in child and adolescent patients with attention deficit hyperactivity disorder[J]. Psychiatry Investig, 2015, 12(3): 361-366. PMID: 26207130. PMCID: PMC4504919. DOI: 10.4306/pi.2015.12.3.361.
11 Miniksar DY, Cans?z MA, G??men AY, et al. The effect of drug use, body mass index and blood pressure on oxidative stress levels in children and adolescents with attention deficit and hyperactivity disorder[J]. Clin Psychopharmacol Neurosci, 2023, 21(1): 88-98. PMID: 36700315. PMCID: PMC9889889. DOI: 10.9758/cpn.2023.21.1.88.
12 Ceylan M, Sener S, Bayraktar AC, et al. Oxidative imbalance in child and adolescent patients with attention-deficit/hyperactivity disorder[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2010, 34(8): 1491-1494. PMID: 20732373. DOI: 10.1016/j.pnpbp.2010.08.010.
13 Nasim S, Naeini AA, Najafi M, et al. Relationship between antioxidant status and attention deficit hyperactivity disorder among children[J]. Int J Prev Med, 2019, 10: 41. PMID: 31057726. PMCID: PMC6484508. DOI: 10.4103/ijpvm.IJPVM_80_18.
14 Morimoto M, Hashimoto T, Tsuda Y, et al. Evaluation of oxidative stress and antioxidant capacity in healthy children[J]. J Chin Med Assoc, 2019, 82(8): 651-654. PMID: 30893262. DOI: 10.1097/JCMA.0000000000000045.
15 Kitaoka T, Morimoto M, Hashimoto T, et al. Evaluation of the efficacy of drug treatment based on measurement of the oxidative stress, using reactive oxygen metabolites and biological antioxidant potential, in children with autism spectrum disorder and attention deficit hyperactivity disorder[J]. J Pharm Health Care Sci, 2020, 6: 8. PMID: 32351702. PMCID: PMC7183642. DOI: 10.1186/s40780-020-00164-w.
16 Verlaet AAJ, Breynaert A, Ceulemans B, et al. Oxidative stress and immune aberrancies in attention-deficit/hyperactivity disorder (ADHD): a case-control comparison[J]. Eur Child Adolesc Psychiatry, 2019, 28(5): 719-729. PMID: 30350094. DOI: 10.1007/s00787-018-1239-4.
17 周荣易, 王娇娇, 韩新民. SHR、WKY大鼠与SD大鼠注意缺陷多动障碍模型行为学特征的比较[J]. 中国实验动物学报, 2017, 25(4): 380-385. DOI:10.3969/j.issn.1005-4847.2017.04.007.
18 Leffa DT, Bellaver B, de Oliveira C, et al. Increased oxidative parameters and decreased cytokine levels in an animal model of attention-deficit/hyperactivity disorder[J]. Neurochem Res, 2017, 42(11): 3084-3092. PMID: 28664398. DOI: 10.1007/s11064-017-2341-6.
19 Koz?owska A, Wojtacha P, Równiak M, et al. ADHD pathogenesis in the immune, endocrine and nervous systems of juvenile and maturating SHR and WKY rats[J]. Psychopharmacology (Berl), 2019, 236(10): 2937-2958. PMID: 30737597. PMCID: PMC6820808. DOI: 10.1007/s00213-019-5180-0.
20 Dupuy C, Castelnau P, Mavel S, et al. SHR/NCrl rats as a model of ADHD can be discriminated from controls based on their brain, blood, or urine metabolomes[J]. Transl Psychiatry, 2021, 11(1): 235. PMID: 33888684. PMCID: PMC8062531. DOI: 10.1038/s41398-021-01344-4.
21 Sharma N, Luhach K, Golani LK, et al. Vinpocetine, a PDE1 modulator, regulates markers of cerebral health, inflammation, and oxidative stress in a rat model of prenatal alcohol-induced experimental attention deficit hyperactivity disorder[J]. Alcohol, 2022, 105: 25-34. PMID: 35995260. DOI: 10.1016/j.alcohol.2022.08.005.
22 Janner DE, Gomes NS, Poetini MR, et al. Oxidative stress and decreased dopamine levels induced by imidacloprid exposure cause behavioral changes in a neurodevelopmental disorder model in Drosophila melanogaster[J]. Neurotoxicology, 2021, 85: 79-89. PMID: 34000340. DOI: 10.1016/j.neuro.2021.05.006.
23 Drechsler R, Brem S, Brandeis D, et al. ADHD: current concepts and treatments in children and adolescents[J]. Neuropediatrics, 2020, 51(5): 315-335. PMID: 32559806. PMCID: PMC7508636. DOI: 10.1055/s-0040-1701658.
24 李雪军, 王淑敏, 姜之炎, 等. 注意缺陷多动障碍模型及其病理机制研究进展[J]. 中国比较医学杂志, 2023, 33(5): 145-152. DOI: 10.3969/j.issn.1671-7856.2023.05.018.
25 李鑫, 蔚立涛, 赵秉宏, 等. 蒙古黄芪多糖对注意缺陷多动障碍模型大鼠前额叶神经元的影响[J]. 包头医学院学报, 2022, 38(12): 11-16. DOI: 10.16833/j.cnki.jbmc.2022.12.003.
26 Ayala-Lopez N, Watts SW. Physiology and pharmacology of neurotransmitter transporters[J]. Compr Physiol, 2021, 11(3): 2279-2295. PMID: 34190339. DOI: 10.1002/cphy.c200035.
27 Monzani E, Nicolis S, Dell'Acqua S, et al. Dopamine, oxidative stress and protein-quinone modifications in Parkinson's and other neurodegenerative diseases[J]. Angew Chem Int Ed Engl, 2019, 58(20): 6512-6527. PMID: 30536578. DOI: 10.1002/anie.201811122.
28 Umek N, Ger?ak B, Vintar N, et al. Dopamine autoxidation is controlled by acidic pH[J]. Front Mol Neurosci, 2018, 11: 467. PMID: 30618616. PMCID: PMC6305604. DOI: 10.3389/fnmol.2018.00467.
29 Chakrabarti S, Bisaglia M. Oxidative stress and neuroinflammation in Parkinson's disease: the role of dopamine oxidation products[J]. Antioxidants (Basel), 2023, 12(4): 955. PMID: 37107329. PMCID: PMC10135711. DOI: 10.3390/antiox12040955.
30 He JY, Zhu GF, Wang GQ, et al. Oxidative stress and neuroinflammation potentiate each other to promote progression of dopamine neurodegeneration[J]. Oxid Med Cell Longev, 2020, 2020: 6137521. PMID: 32714488. PMCID: PMC7354668. DOI: 10.1155/2020/6137521.
31 Zhou ZD, Xie SP, Saw WT, et al. The therapeutic implications of tea polyphenols against dopamine (DA) neuron degeneration in Parkinson's disease (PD)[J]. Cells, 2019, 8(8): 911. PMID: 31426448. PMCID: PMC6721683. DOI: 10.3390/cells8080911.
32 Masato A, Plotegher N, Boassa D, et al. Impaired dopamine metabolism in Parkinson's disease pathogenesis[J]. Mol Neurodegener, 2019, 14(1): 35. PMID: 31488222. PMCID: PMC6728988. DOI: 10.1186/s13024-019-0332-6.
33 Zhou RY, Wang JJ, Sun JC, et al. Attention deficit hyperactivity disorder may be a highly inflammation and immune-associated disease (Review)[J]. Mol Med Rep, 2017, 16(4): 5071-5077. PMID: 28849096. DOI: 10.3892/mmr.2017.7228.
34 Sharma N, Dhiman N, Golani LK, et al. Papaverine ameliorates prenatal alcohol-induced experimental attention deficit hyperactivity disorder by regulating neuronal function, inflammation, and oxidative stress[J]. Int J Dev Neurosci, 2021, 81(1): 71-81. PMID: 33175424. DOI: 10.1002/jdn.10076.
35 Sho T, Xu JX. Role and mechanism of ROS scavengers in alleviating NLRP3-mediated inflammation[J]. Biotechnol Appl Biochem, 2019, 66(1): 4-13. PMID: 30315709. DOI: 10.1002/bab.1700.
36 Huang Y, Xu W, Zhou RB. NLRP3 inflammasome activation and cell death[J]. Cell Mol Immunol, 2021, 18(9): 2114-2127. PMID: 34321623. PMCID: PMC8429580. DOI: 10.1038/s41423-021-00740-6.
37 Kelley N, Jeltema D, Duan YH, et al. The NLRP3 inflammasome: an overview of mechanisms of activation and regulation[J]. Int J Mol Sci, 2019, 20(13): 3328. PMID: 31284572. PMCID: PMC6651423. DOI: 10.3390/ijms20133328.
38 Lepetsos P, Papavassiliou KA, Papavassiliou AG. Redox and NF-κB signaling in osteoarthritis[J]. Free Radic Biol Med, 2019, 132: 90-100. PMID: 30236789. DOI: 10.1016/j.freeradbiomed.2018.09.025.
39 Bhatt S, Nagappa AN, Patil CR. Role of oxidative stress in depression[J]. Drug Discov Today, 2020, 25(7): 1270-1276. PMID: 32404275. DOI: 10.1016/j.drudis.2020.05.001.
40 Erickson MA, Dohi K, Banks WA. Neuroinflammation: a common pathway in CNS diseases as mediated at the blood-brain barrier[J]. Neuroimmunomodulation, 2012, 19(2): 121-130. PMID: 22248728. PMCID: PMC3707010. DOI: 10.1159/000330247.
41 Abais JM, Xia M, Zhang Y, et al. Redox regulation of NLRP3 inflammasomes: ROS as trigger or effector?[J]. Antioxid Redox Signal, 2015, 22(13): 1111-1129. PMID: 25330206. PMCID: PMC4403231. DOI: 10.1089/ars.2014.5994.
42 Wang L, He CQ. Nrf2-mediated anti-inflammatory polarization of macrophages as therapeutic targets for osteoarthritis[J]. Front Immunol, 2022, 13: 967193. PMID: 36032081. PMCID: PMC9411667. DOI: 10.3389/fimmu.2022.967193.
43 Saha S, Buttari B, Panieri E, et al. An overview of Nrf2 signaling pathway and its role in inflammation[J]. Molecules, 2020, 25(22): 5474. PMID: 33238435. PMCID: PMC7700122. DOI: 10.3390/molecules25225474.
44 Yang HP, Magilnick N, Lee C, et al. Nrf1 and Nrf2 regulate rat glutamate-cysteine ligase catalytic subunit transcription indirectly via NF-κB and AP-1[J]. Mol Cell Biol, 2005, 25(14): 5933-5946. PMID: 15988009. PMCID: PMC1168815. DOI: 10.1128/MCB.25.14.5933-5946.2005.
45 Lu YJ, Luo Q, Cui HM, et al. Sodium fluoride causes oxidative stress and apoptosis in the mouse liver[J]. Aging (Albany NY), 2017, 9(6): 1623-1639. PMID: 28657544. PMCID: PMC5509460. DOI: 10.18632/aging.101257.
46 李芊芊. 氧化应激诱导细胞凋亡通路的研究进展[J]. 世界最新医学信息文摘, 2019, 19(12): 63-64. DOI: 10.19613/j.cnki.1671-3141.2019.12.029.
47 Chen PH, Hsueh TC, Hong JR. Infectious spleen and kidney necrosis virus induces the reactive oxidative species/Nrf2-mediated oxidative stress response for the regulation of mitochondrion-mediated Bax/Bak cell death signals in GF-1 cells[J]. Front Microbiol, 2022, 13: 958476. PMID: 36304944. PMCID: PMC9593061. DOI: 10.3389/fmicb.2022.958476.
48 Sukumaran P, Nascimento Da Conceicao V, Sun YY, et al. Calcium signaling regulates autophagy and apoptosis[J]. Cells, 2021, 10(8): 2125. PMID: 34440894. PMCID: PMC8394685. DOI: 10.3390/cells10082125.
49 Patergnani S, Danese A, Bouhamida E, et al. Various aspects of calcium signaling in the regulation of apoptosis, autophagy, cell proliferation, and cancer[J]. Int J Mol Sci, 2020, 21(21): 8323. PMID: 33171939. PMCID: PMC7664196. DOI: 10.3390/ijms21218323.
50 Lo CH, Huber EC, Sachs JN. Conformational states of TNFR1 as a molecular switch for receptor function[J]. Protein Sci, 2020, 29(6): 1401-1415. PMID: 31960514. PMCID: PMC7255520. DOI: 10.1002/pro.3829.
51 Gao MC, Zhu HJ, Guo JM, et al. Tannic acid through ROS/TNF-α/TNFR 1 antagonizes atrazine induced apoptosis, programmed necrosis and immune dysfunction of grass carp hepatocytes[J]. Fish Shellfish Immunol, 2022, 131: 312-322. PMID: 36220537. DOI: 10.1016/j.fsi.2022.09.062.
52 Pobezinskaya YL, Liu ZG. The role of TRADD in death receptor signaling[J]. Cell Cycle, 2012, 11(5): 871-876. PMID: 22333735. PMCID: PMC3679287. DOI: 10.4161/cc.11.5.19300.

基金

国家自然科学基金(82104928);中国博士后科学基金第70批面上项目(2021M701123)。

PDF(561 KB)

Accesses

Citation

Detail

段落导航
相关文章

/