遗传缺陷致中枢性性早熟病因学的研究新进展

张余韵, 罗飞宏

中国当代儿科杂志 ›› 2024, Vol. 26 ›› Issue (3) : 302-307.

PDF(514 KB)
PDF(514 KB)
中国当代儿科杂志 ›› 2024, Vol. 26 ›› Issue (3) : 302-307. DOI: 10.7499/j.issn.1008-8830.2309098
综述

遗传缺陷致中枢性性早熟病因学的研究新进展

  • 张余韵, 罗飞宏
作者信息 +

Recent advances in the genetic etiology of central precocious puberty

  • ZHANG Yu-Yun, LUO Fei-Hong
Author information +
文章历史 +

摘要

中枢性性早熟(central precocious puberty, CPP)是下丘脑-垂体-性腺轴提早激活所导致的发育异常性疾病,其发病率快速增加,但发病机制尚未完全明确。既往研究发现KISS1R、KISS1基因的功能获得性突变,以及MKRN3、LIN28DLK1基因的功能缺失性突变可导致青春发育期启动时间提前。新近研究发现表观遗传因素如DNA甲基化、微小核糖核酸在促性腺激素释放激素神经元的调控中起重要作用;基因网络中多个变异基因的协同作用也可影响青春发育启动。该文综述了导致CPP的遗传学病因进展及其致病机制。

Abstract

Central precocious puberty (CPP) is a developmental disorder caused by early activation of the hypothalamic-pituitary-gonadal axis. The incidence of CPP is rapidly increasing, but the underlying mechanisms are not fully understood. Previous studies have shown that gain-of-function mutations in the KISS1R and KISS1 genes and loss-of-function mutations in the MKRN3, LIN28, and DLK1 genes may lead to early initiation of pubertal development. Recent research has also revealed the significant role of epigenetic factors such as DNA methylation and microRNAs in the regulation of gonadotropin-releasing hormone neurons, as well as the modulating effect of gene networks involving multiple variant genes on pubertal initiation. This review summarizes the genetic etiology and pathogenic mechanisms underlying CPP.

关键词

中枢性性早熟 / KISS1基因 / MKRN3基因 / DLK1基因 / 表观遗传学 / 基因网络 / 儿童

Key words

Central precocious puberty / KISS1 gene / MKRN3 gene / DLK1 gene / Epigenetics / Gene network / Child

引用本文

导出引用
张余韵, 罗飞宏. 遗传缺陷致中枢性性早熟病因学的研究新进展[J]. 中国当代儿科杂志. 2024, 26(3): 302-307 https://doi.org/10.7499/j.issn.1008-8830.2309098
ZHANG Yu-Yun, LUO Fei-Hong. Recent advances in the genetic etiology of central precocious puberty[J]. Chinese Journal of Contemporary Pediatrics. 2024, 26(3): 302-307 https://doi.org/10.7499/j.issn.1008-8830.2309098

参考文献

1 Banerjee S, Bajpai A. Precocious puberty[J]. Indian J Pediatr, 2023, 90(6): 582-589. PMID: 37074536. DOI: 10.1007/s12098-023-04554-4.
2 中华医学会儿科学分会内分泌遗传代谢学组, 中华儿科杂志编辑委员会. 中枢性性早熟诊断与治疗专家共识(2022)[J]. 中华儿科杂志, 2023, 61(1): 16-22. DOI:10.3760/cma.j.cn112140-20220802-00693.
3 Xie Q, Kang Y, Zhang C, et al. The role of kisspeptin in the control of the hypothalamic-pituitary-gonadal axis and reproduction[J]. Front Endocrinol (Lausanne), 2022, 13: 925206. PMID: 35837314. PMCID: PMC9273750. DOI: 10.3389/fendo.2022.925206.
4 Kaprara A, Huhtaniemi IT. The hypothalamus-pituitary-gonad axis: tales of mice and men[J]. Metabolism, 2018, 86: 3-17. PMID: 29223677. DOI: 10.1016/j.metabol.2017.11.018.
5 Shahab M, Lippincott M, Chan YM, et al. Discordance in the dependence on kisspeptin signaling in mini puberty vs adolescent puberty: human genetic evidence[J]. J Clin Endocrinol Metab, 2018, 103(4): 1273-1276. PMID: 29452377. PMCID: PMC6276658. DOI: 10.1210/jc.2017-02636.
6 Yeo SH, Colledge WH. The role of Kiss1 neurons as integrators of endocrine, metabolic, and environmental factors in the hypothalamic-pituitary-gonadal axis[J]. Front Endocrinol (Lausanne), 2018, 9: 188. PMID: 29755406. PMCID: PMC5932150. DOI: 10.3389/fendo.2018.00188.
7 王海莲, 葛伟, 薛江. Kisspeptin-GPR54-GnRH神经元轴在雌性大鼠中枢性性早熟中的作用[J]. 山东医药, 2012, 52(17): 4-6. DOI: 10.3969/j.issn.1002-266X.2012.17.002.
8 Rhie YJ, Lee KH, Eun SH, et al. Serum kisspeptin levels in Korean girls with central precocious puberty[J]. J Korean Med Sci, 2011, 26(7): 927-931. PMID: 21738347. PMCID: PMC3124724. DOI: 10.3346/jkms.2011.26.7.927.
9 Canton APM, Seraphim CE, Brito VN, et al. Pioneering studies on monogenic central precocious puberty[J]. Arch Endocrinol Metab, 2019, 63(4): 438-444. PMID: 31460623. PMCID: PMC10528652. DOI: 10.20945/2359-3997000000164.
10 Valadares LP, Meireles CG, De Toledo IP, et al. MKRN3 mutations in central precocious puberty: a systematic review and meta-analysis[J]. J Endocr Soc, 2019, 3(5): 979-995. PMID: 31041429. PMCID: PMC6483926. DOI: 10.1210/js.2019-00041.
11 Brito VN, Canton APM, Seraphim CE, et al. The congenital and acquired mechanisms implicated in the etiology of central precocious puberty[J]. Endocr Rev, 2023, 44(2): 193-221. PMID: 35930274. PMCID: PMC9985412. DOI: 10.1210/endrev/bnac020.
12 Palumbo S, Cirillo G, Aiello F, et al. MKRN3 role in regulating pubertal onset: the state of art of functional studies[J]. Front Endocrinol (Lausanne), 2022, 13: 991322. PMID: 36187104. PMCID: PMC9523110. DOI: 10.3389/fendo.2022.991322.
13 Soriano-Guillén L, Argente J. Central precocious puberty, functional and tumor-related[J]. Best Pract Res Clin Endocrinol Metab, 2019, 33(3): 101262. PMID: 30733078. DOI: 10.1016/j.beem.2019.01.003.
14 Abreu AP, Toro CA, Song YB, et al. MKRN3 inhibits the reproductive axis through actions in kisspeptin-expressing neurons [J]. J Clin Invest, 2020, 130(8): 4486-4500.PMID: 32407292. PMCID: PMC7410046. DOI: 10.1172/jci136564.
15 Grandone A, Cirillo G, Sasso M, et al. MKRN3 levels in girls with central precocious puberty and correlation with sexual hormone levels: a pilot study[J]. Endocrine, 2018, 59(1): 203-208. PMID: 28299573. DOI: 10.1007/s12020-017-1281-x.
16 Neocleous V, Fanis P, Toumba M, et al. Pathogenic and low-frequency variants in children with central precocious puberty[J]. Front Endocrinol (Lausanne), 2021, 12: 745048. PMID: 34630334. PMCID: PMC8498594. DOI: 10.3389/fendo.2021.745048.
17 陈占峰, 赵培伟, 蔡晓楠, 等. MKRN3基因rs2239669多态性与中枢性性早熟易感性的相关性研究[J]. 临床儿科杂志, 2018, 36(5): 372-375, 380. DOI: 10.3969/j.issn.1000-3606.2018.05.013.
18 Perk J, Makedonski K, Lande L, et al. The imprinting mechanism of the Prader-Willi/Angelman regional control center[J]. EMBO J, 2002, 21(21): 5807-5814. PMID: 12411498. PMCID: PMC131067. DOI: 10.1093/emboj/cdf570.
19 Maione L, Bouvattier C, Kaiser UB. Central precocious puberty: recent advances in understanding the aetiology and in the clinical approach[J]. Clin Endocrinol (Oxf), 2021, 95(4): 542-555. PMID: 33797780. PMCID: PMC8586890. DOI: 10.1111/cen.14475.
20 Tinano FR, Canton APM, Montenegro LR, et al. Clinical and genetic characterization of familial central precocious puberty[J]. J Clin Endocrinol Metab, 2023, 108(7): 1758-1767. PMID: 36611250. DOI: 10.1210/clinem/dgac763.
21 Jeong HR, Yoon JS, Lee HJ, et al. Serum level of NPTX1 is independent of serum MKRN3 in central precocious puberty[J]. J Pediatr Endocrinol Metab, 2021, 34(1): 59-63. PMID: 33180049. DOI: 10.1515/jpem-2020-0402.
22 Canton APM, Krepischi ACV, Montenegro LR, et al. Insights from the genetic characterization of central precocious puberty associated with multiple anomalies[J]. Hum Reprod, 2021, 36(2): 506-518. PMID: 33313884. DOI: 10.1093/humrep/deaa306.
23 Macedo DB, Kaiser UB. DLK1, notch signaling and the timing of puberty[J]. Semin Reprod Med, 2019, 37(4): 174-181. PMID: 31972862. PMCID: PMC8585528. DOI: 10.1055/s-0039-3400963.
24 Roberts SA, Kaiser UB. Genetics in endocrinology: genetic etiologies of central precocious puberty and the role of imprinted genes[J]. Eur J Endocrinol, 2020, 183(4): R107-R117. PMID: 32698138. PMCID: PMC7682746. DOI: 10.1530/EJE-20-0103.
25 Kagami M, Nagasaki K, Kosaki R, et al. Temple syndrome: comprehensive molecular and clinical findings in 32 Japanese patients[J]. Genet Med, 2017, 19(12): 1356-1366. PMID: 28640239. PMCID: PMC5729347. DOI: 10.1038/gim.2017.53.
26 Gomes LG, Cunha-Silva M, Crespo RP, et al. DLK1 is a novel link between reproduction and metabolism[J]. J Clin Endocrinol Metab, 2019, 104(6): 2112-2120. PMID: 30462238. DOI: 10.1210/jc.2018-02010.
27 Chen T, Chen L, Wu H, et al. Low frequency of MKRN3 and DLK1 variants in Chinese children with central precocious puberty[J]. Int J Endocrinol, 2019, 2019: 9879367. PMID: 31687022. PMCID: PMC6794979. DOI: 10.1155/2019/9879367.
28 Perry JR, Stolk L, Franceschini N, et al. Meta-analysis of genome-wide association data identifies two loci influencing age at menarche[J]. Nat Genet, 2009, 41(6): 648-650. PMID: 19448620. PMCID: PMC2942986. DOI: 10.1038/ng.386.
29 Yi BR, Kim HJ, Park HS, et al. Association between MKRN3 and LIN28B polymorphisms and precocious puberty[J]. BMC Genet, 2018, 19(1): 47. PMID: 30053798. PMCID: PMC6062980. DOI: 10.1186/s12863-018-0658-z.
30 Zhu H, Shah S, Shyh-Chang N, et al. Lin28a transgenic mice manifest size and puberty phenotypes identified in human genetic association studies[J]. Nat Genet, 2010, 42(7): 626-630. PMID: 20512147. PMCID: PMC3069638. DOI: 10.1038/ng.593.
31 Tommiska J, S?rensen K, Aksglaede L, et al. LIN28B, LIN28A, KISS1, and KISS1R in idiopathic central precocious puberty [J]. BMC Res Notes, 2011, 4: 363. PMID: 21939553.PMCID: PMC3184284.DOI: 10.1186/1756-0500-4-363.
32 Roszko KL, Guthrie L, Li X, et al. Identification of GNAS variants in circulating cell-free DNA from patients with fibrous dysplasia/McCune Albright syndrome[J]. J Bone Miner Res, 2023, 38(3): 443-450. PMID: 36593655. DOI: 10.1002/jbmr.4766.
33 Patak J, Gilfert J, Byler M, et al. MAGEL2-related disorders: a study and case series[J]. Clin Genet, 2019, 96(6): 493-505. PMID: 31397880. PMCID: PMC6864226. DOI: 10.1111/cge.13620.
34 Moise-Silverman J, Silverman LA. A review of the genetics and epigenetics of central precocious puberty[J]. Front Endocrinol (Lausanne), 2022, 13: 1029137. PMID: 36531492. PMCID: PMC9757059. DOI: 10.3389/fendo.2022.1029137.
35 Wakeling EL, Brioude F, Lokulo-Sodipe O, et al. Diagnosis and management of Silver-Russell syndrome: first international consensus statement[J]. Nat Rev Endocrinol, 2017, 13(2): 105-124. PMID: 27585961. DOI: 10.1038/nrendo.2016.138.
36 Bernstein U, Demuth S, Puk O, et al. Novel MECP2 mutation c.1162_1172del; p.Pro388* in two patients with symptoms of atypical Rett syndrome[J]. Mol Syndromol, 2019, 10(4): 223-228. PMID: 31602196. PMCID: PMC6738185. DOI: 10.1159/000501183.
37 Lomniczi A, Loche A, Castellano JM, et al. Epigenetic control of female puberty[J]. Nat Neurosci, 2013, 16(3): 281-289. PMID: 23354331. PMCID: PMC3581714. DOI: 10.1038/nn.3319.
38 Bessa DS, Maschietto M, Aylwin CF, et al. Methylome profiling of healthy and central precocious puberty girls[J]. Clin Epigenetics, 2018, 10(1): 146. PMID: 30466473. PMCID: PMC6251202. DOI: 10.1186/s13148-018-0581-1.
39 Dauber A, Cunha-Silva M, Macedo DB, et al. Paternally inherited DLK1 deletion associated with familial central precocious puberty[J]. J Clin Endocrinol Metab, 2017, 102(5): 1557-1567. PMID: 28324015. PMCID: PMC5443333. DOI: 10.1210/jc.2016-3677.
40 Lee HS, Jin HS, Shim YS, et al. Low frequency of MKRN3 mutations in central precocious puberty among Korean girls[J]. Horm Metab Res, 2016, 48(2): 118-122. PMID: 25938887. DOI: 10.1055/s-0035-1548938.
41 Li C, Lu W, Yang L, et al. MKRN3 regulates the epigenetic switch of mammalian puberty via ubiquitination of MBD3[J]. Natl Sci Rev, 2020, 7(3): 671-685. PMID: 34692086. PMCID: PMC8288866. DOI: 10.1093/nsr/nwaa023.
42 Faienza MF, Urbano F, Moscogiuri LA, et al. Genetic, epigenetic and enviromental influencing factors on the regulation of precocious and delayed puberty[J]. Front Endocrinol (Lausanne), 2022, 13: 1019468. PMID: 36619551. PMCID: PMC9813382. DOI: 10.3389/fendo.2022.1019468.
43 Heras V, Sangiao-Alvarellos S, Manfredi-Lozano M, et al. Hypothalamic miR-30 regulates puberty onset via repression of the puberty-suppressing factor, Mkrn3[J]. PLoS Biol, 2019, 17(11): e3000532. PMID: 31697675. PMCID: PMC6863565. DOI: 10.1371/journal.pbio.3000532.
44 Manfredi-Lozano M, Leysen V, Adamo M, et al. GnRH replacement rescues cognition in Down syndrome[J]. Science, 2022, 377(6610): eabq4515. PMID: 36048943. PMCID: PMC7613827. DOI: 10.1126/science.abq4515.
45 Neale BM, Kou Y, Liu L, et al. Patterns and rates of exonic de novo mutations in autism spectrum disorders[J]. Nature, 2012, 485(7397): 242-245. PMID: 22495311. PMCID: PMC3613847. DOI: 10.1038/nature11011.
46 Cukier P, Wright H, Rulfs T, et al. Molecular and gene network analysis of thyroid transcription factor 1 (TTF1) and enhanced at puberty (EAP1) genes in patients with GnRH-dependent pubertal disorders[J]. Horm Res Paediatr, 2013, 80(4): 257-266. PMID: 24051510. DOI: 10.1159/000354643.

PDF(514 KB)

Accesses

Citation

Detail

段落导航
相关文章

/