目的 探讨5岁以上川崎病(Kawasaki disease, KD)儿童合并冠状动脉病变(coronary artery lesion)的预测指标并构建风险预测模型。 方法 回顾性分析2018年1月—2023年1月华中科技大学同济医学院附属武汉儿童医院收治的5岁以上KD患儿的临床资料,其中合并CAL 47例,未合并CAL 178例。采用多因素logistic回归分析探讨5岁以上KD儿童合并CAL发生的预测指标并构建风险预测模型,采用受试者操作特性曲线评价预测模型的效果。最后根据Framingham风险评分法对预测指标进行分层量化,计算各指标对5岁以上KD儿童合并CAL预测的贡献值并构建风险预测评分模型。 结果 多因素logistic回归分析显示,首剂静脉注射免疫球蛋白(intravenous immunoglobulin, IVIG)治疗前发热时长(OR=1.374,95%CI:1.117~1.689)、超敏C反应蛋白(hypersensitive C-reactive protein, hs-CRP;OR=1.008,95%CI:1.001~1.015)及血清铁蛋白(OR=1.002,95%CI:1.001~1.003)是5岁以上KD儿童合并CAL发生的预测指标。各指标预测CAL发生的最佳截断值为:首剂IVIG治疗前发热时长为6.5 d(AUC=0.654,95%CI:0.565~0.744),hs-CRP为110.50 mg/L(AUC=0.686,95%CI:0.597~0.774),铁蛋白为313.62 mg/L(AUC=0.724,95%CI:0.642~0.805)。据Framingham风险评分法对预测指标赋值并构建风险预测评分模型,将CAL发生的低、中、高危状态分别定义为发生概率<10%、10%~20%和>20%,对应分值分别为0~4分、5~6分、≥7分。 结论 在5岁以上KD患儿中,首次IVIG治疗前发热时间较长、hs-CRP水平较高或血清铁蛋白水平较高者,易发生CAL。
Abstract
Objective To study predictive indicators for coronary artery lesions (CAL) and construct a risk prediction model for CAL in Kawasaki disease (KD) children over 5 years old. Methods A retrospective analysis of KD children over 5 years old at Wuhan Children's Hospital of Tongji Medical College of Huazhong University of Science and Technology from January 2018 to January 2023 was conducted. Among them, 47 cases were complicated with CAL, and 178 cases were not. Multivariate logistic regression analysis was used to explore predictive indicators for CAL in KD children over 5 years old and construct a risk prediction model. The receiver operating characteristic curve was used to evaluate the effectiveness of the prediction model. Finally, the Framingham risk scoring method was used to quantify the predictive indicators, calculate the contribution of each indicator to the prediction of CAL in KD children over 5 years old, and construct a risk prediction scoring model. Results The multivariate logistic regression analysis showed that the duration of fever before the initial intravenous immunoglobulin (IVIG) treatment (OR=1.374, 95%CI: 1.117-1.689), levels of hypersensitive C-reactive protein (hs-CRP; OR=1.008, 95%CI: 1.001-1.015), and serum ferritin levels (OR=1.002, 95%CI: 1.001-1.003) were predictive indicators for CAL in KD children over 5 years old. The optimal cutoff values for predicting CAL were: duration of fever before initial IVIG treatment of 6.5 days (AUC=0.654, 95%CI: 0.565-0.744), hs-CRP of 110.50 mg/L (AUC=0.686, 95%CI: 0.597-0.774), and ferritin of 313.62 mg/L (AUC=0.724, 95%CI: 0.642-0.805). According to the Framingham risk scoring method, the low, medium, and high-risk states of CAL occurrence were defined as probabilities of <10%, 10%-20%, and >20%, respectively, with corresponding scores of 0-4 points, 5-6 points, and ≥7 points. Conclusions In KD children over 5 years old, those with a longer duration of fever before initial IVIG treatment, higher levels of hs-CRP, or elevated serum ferritin levels are more likely to develop CAL.
关键词
川崎病 /
冠状动脉病变 /
预测指标 /
风险预测模型 /
儿童
Key words
Kawasaki disease /
Coronary artery lesion /
Predictive indicator /
Risk prediction model /
Child
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
1 McCrindle BW, Rowley AH, Newburger JW, et al. Diagnosis, treatment, and long-term management of Kawasaki disease: a scientific statement for health professionals from the American Heart Association[J]. Circulation, 2017, 135(17): e927-e999. PMID: 28356445. DOI: 10.1161/CIR.0000000000000484.
2 Miyata K, Miura M, Kaneko T, et al. Evaluation of a Kawasaki disease risk model for predicting coronary artery aneurysms in a Japanese population: an analysis of post RAISE[J]. J Pediatr, 2021, 237: 96-101.e3. PMID: 34147499. DOI: 10.1016/j.jpeds.2021.06.022.
3 Miura M, Kobayashi T, Kaneko T, et al. Association of severity of coronary artery aneurysms in patients with Kawasaki disease and risk of later coronary events[J]. JAMA Pediatr, 2018, 172(5): e180030. PMID: 29507955. PMCID: PMC5875323. DOI: 10.1001/jamapediatrics.2018.0030.
4 Friedman KG, Gauvreau K, Hamaoka-Okamoto A, et al. Coronary artery aneurysms in Kawasaki disease: risk factors for progressive disease and adverse cardiac events in the US population[J]. J Am Heart Assoc, 2016, 5(9): e003289. PMID: 27633390. PMCID: PMC5079009. DOI: 10.1161/JAHA.116.003289.
5 Ae R, Makino N, Kosami K, et al. Epidemiology, treatments, and cardiac complications in patients with Kawasaki disease: the nationwide survey in Japan, 2017-2018[J]. J Pediatr, 2020, 225: 23-29.e2. PMID: 32454114. DOI: 10.1016/j.jpeds.2020.05.034.
6 Mat Bah MN, Alias EY, Razak H, et al. Epidemiology, clinical characteristics, and immediate outcome of Kawasaki disease: a population-based study from a tropical country[J]. Eur J Pediatr, 2021, 180(8): 2599-2606. PMID: 34086103. DOI: 10.1007/s00431-021-04135-7.
7 Huang H, Dong J, Wang S, et al. Prediction model risk-of-bias assessment tool for coronary artery lesions in Kawasaki disease[J]. Front Cardiovasc Med, 2022, 9: 1014067. PMID: 36312287. PMCID: PMC9606216. DOI: 10.3389/fcvm.2022.1014067.
8 Masuda H, Ae R, Koshimizu TA, et al. Serum sodium level associated with coronary artery lesions in patients with Kawasaki disease[J]. Clin Rheumatol, 2022, 41(1): 137-145. PMID: 34363547. DOI: 10.1007/s10067-021-05881-7.
9 Li J, Li DE, Hu M, et al. Red blood cell distribution width and tumor necrosis factor-α for the early prediction of coronary artery lesion in Kawasaki disease: a retrospective study[J]. Eur J Pediatr, 2022, 181(3): 903-909. PMID: 34494160. DOI: 10.1007/s00431-021-04252-3.
10 Onoki T, Metoki T, Iwasawa S, et al. Two distinct cases of adult-onset Kawasaki disease[J]. Intern Med, 2022, 61(23): 3525-3529. PMID: 35466164. PMCID: PMC9790799. DOI: 10.2169/internalmedicine.9044-21.
11 中华医学会儿科学分会心血管学组, 中华医学会儿科学分会风湿学组, 中华医学会儿科学分会免疫学组, 等. 川崎病诊断和急性期治疗专家共识[J]. 中华儿科杂志, 2022, 60(1): 6-13. PMID: 34986616. DOI: 10.3760/cma.j.cn112140-20211018-00879.
12 中华医学会儿科学分会心血管学组, 中华儿科杂志编辑委员会. 川崎病冠状动脉病变的临床处理建议(2020年修订版)[J]. 中华儿科杂志, 2020, 58(9): 718-724. PMID: 32872711. DOI: 10.3760/cma.j.cn112140-20200422-00421.
13 Alba AC, Agoritsas T, Walsh M, et al. Discrimination and calibration of clinical prediction models: users' guides to the medical literature[J]. JAMA, 2017, 318(14): 1377-1384. PMID: 29049590. DOI: 10.1001/jama.2017.12126.
14 Andersson C, Johnson AD, Benjamin EJ, et al. 70-year legacy of the Framingham heart study[J]. Nat Rev Cardiol, 2019, 16(11): 687-698. PMID: 31065045. DOI: 10.1038/s41569-019-0202-5.
15 Stański K, Lycett S, Porphyre T, et al. Using machine learning improves predictions of herd-level bovine tuberculosis breakdowns in Great Britain[J]. Sci Rep, 2021, 11(1): 2208. PMID: 33500436. PMCID: PMC7838174. DOI: 10.1038/s41598-021-81716-4.
16 Pencina MJ, D'Agostino RB, Vasan RS. Statistical methods for assessment of added usefulness of new biomarkers[J]. Clin Chem Lab Med, 2010, 48(12): 1703-1711. PMID: 20716010. PMCID: PMC3155999. DOI: 10.1515/CCLM.2010.340.
17 Kobayashi T, Ayusawa M, Suzuki H, et al. Revision of diagnostic guidelines for Kawasaki disease (6th revised edition)[J]. Pediatr Int, 2020, 62(10): 1135-1138. PMID: 33001522. DOI: 10.1111/ped.14326.
18 Yan F, Zhang H, Xiong R, et al. Effect of early intravenous immunoglobulin therapy in Kawasaki disease: a systematic review and meta-analysis[J]. Front Pediatr, 2020, 8: 593435. PMID: 33330287. PMCID: PMC7715029. DOI: 10.3389/fped.2020.593435.
19 Tulloh RMR, Mayon-White R, Harnden A, et al. Kawasaki disease: a prospective population survey in the UK and Ireland from 2013 to 2015[J]. Arch Dis Child, 2019, 104(7): 640-646. PMID: 30104394. DOI: 10.1136/archdischild-2018-315087.
20 Jindal AK, Pilania RK, Guleria S, et al. Kawasaki disease in children older than 10 years: a clinical experience from northwest India[J]. Front Pediatr, 2020, 8: 24. PMID: 32117831. PMCID: PMC7034337. DOI: 10.3389/fped.2020.00024.
21 Cai Z, Zuo R, Liu Y. Characteristics of Kawasaki disease in older children[J]. Clin Pediatr (Phila), 2011, 50(10): 952-956. PMID: 21628347. DOI: 10.1177/0009922811409027.
22 Watanabe Y, Ikeda H, Watanabe T. Differences in the clinical characteristics of Kawasaki disease between older and younger children (2015-2019): a single-center, retrospective study[J]. J Pediatr, 2023, 253: 266-269. PMID: 36208665. DOI: 10.1016/j.jpeds.2022.09.056.
23 Son MBF, Gauvreau K, Tremoulet AH, et al. Risk model development and validation for prediction of coronary artery aneurysms in Kawasaki disease in a north American population[J]. J Am Heart Assoc, 2019, 8(11): e011319. PMID: 31130036. PMCID: PMC6585355. DOI: 10.1161/JAHA.118.011319.
24 Kim SH, Song ES, Yoon S, et al. Serum ferritin as a diagnostic biomarker for Kawasaki disease[J]. Ann Lab Med, 2021, 41(3): 318-322. PMID: 33303717. PMCID: PMC7748097. DOI: 10.3343/alm.2021.41.3.318.
25 Wen H, Hun M, Zhao M, et al. Serum ferritin as a crucial biomarker in the diagnosis and prognosis of intravenous immunoglobulin resistance and coronary artery lesions in Kawasaki disease: a systematic review and meta-analysis[J]. Front Med (Lausanne), 2022, 9: 941739. PMID: 36035423. PMCID: PMC9399505. DOI: 10.3389/fmed.2022.941739.
26 Mitani Y, Sawada H, Hayakawa H, et al. Elevated levels of high-sensitivity C-reactive protein and serum amyloid-A late after Kawasaki disease: association between inflammation and late coronary sequelae in Kawasaki disease[J]. Circulation, 2005, 111(1): 38-43. PMID: 15611368. DOI: 10.1161/01.CIR.0000151311.38708.29.
27 Zhang HY, Xiao M, Zhou D, et al. Platelet and ferritin as early predictive factors for the development of macrophage activation syndrome in children with Kawasaki disease: a retrospective case-control study[J]. Front Pediatr, 2023, 11: 1088525. PMID: 36873655. PMCID: PMC9977190. DOI: 10.3389/fped.2023.1088525.
28 Chang LS, Lin YJ, Yan JH, et al. Neutrophil-to-lymphocyte ratio and scoring system for predicting coronary artery lesions of Kawasaki disease[J]. BMC Pediatr, 2020, 20(1): 398. PMID: 32838756. PMCID: PMC7446151. DOI: 10.1186/s12887-020-02285-5.
29 Sharma C, Ganigara M, Galeotti C, et al. Multisystem inflammatory syndrome in children and Kawasaki disease: a critical comparison[J]. Nat Rev Rheumatol, 2021, 17(12): 731-748. PMID: 34716418. PMCID: PMC8554518. DOI: 10.1038/s41584-021-00709-9.
30 Kabeerdoss J, Pilania RK, Karkhele R, et al. Severe COVID-19, multisystem inflammatory syndrome in children, and Kawasaki disease: immunological mechanisms, clinical manifestations and management[J]. Rheumatol Int, 2021, 41(1): 19-32. PMID: 33219837. PMCID: PMC7680080. DOI: 10.1007/s00296-020-04749-4.
31 Zhang QY, Xu BW, Du JB. Similarities and differences between multiple inflammatory syndrome in children associated with COVID-19 and Kawasaki disease: clinical presentations, diagnosis, and treatment[J]. World J Pediatr, 2021, 17(4): 335-340. PMID: 34013488. PMCID: PMC8134825. DOI: 10.1007/s12519-021-00435-y.
32 Verdoni L, Mazza A, Gervasoni A, et al. An outbreak of severe Kawasaki-like disease at the Italian epicentre of the SARS-CoV-2 epidemic: an observational cohort study[J]. Lancet, 2020, 395(10239): 1771-1778. PMID: 32410760. PMCID: PMC7220177. DOI: 10.1016/S0140-6736(20)31103-X.
33 Feldstein LR, Rose EB, Horwitz SM, et al. Multisystem inflammatory syndrome in U.S. children and adolescents[J]. N Engl J Med, 2020, 383(4): 334-346. PMID: 32598831. PMCID: PMC7346765. DOI: 10.1056/NEJMoa2021680.
基金
武汉儿童医院临床医学研究项目(2022FE011)。