4~6岁阻塞性睡眠呼吸暂停低通气综合征患儿肠道代谢产物特征及临床价值分析

陈悦, 卢燕波, 吴军华, 邱海燕

中国当代儿科杂志 ›› 2024, Vol. 26 ›› Issue (6) : 575-583.

PDF(2097 KB)
HTML
PDF(2097 KB)
HTML
中国当代儿科杂志 ›› 2024, Vol. 26 ›› Issue (6) : 575-583. DOI: 10.7499/j.issn.1008-8830.2309129
论著·临床研究

4~6岁阻塞性睡眠呼吸暂停低通气综合征患儿肠道代谢产物特征及临床价值分析

  • 陈悦1,2, 卢燕波1,2, 吴军华2, 邱海燕2
作者信息 +

Characteristics and clinical value of intestinal metabolites in children aged 4-6 years with obstructive sleep apnea-hypopnea syndrome

  • CHEN Yue, LU Yan-Bo, WU Jun-Hua, QIU Hai-Yan
Author information +
文章历史 +

摘要

目的 探究4~6岁阻塞性睡眠呼吸暂停低通气综合征(obstructive sleep apnea-hypopnea syndrome, OSAHS)患儿肠道代谢产物特征及其临床价值。 方法 前瞻性纳入31例4~6岁OSAHS患儿作为试验组,24例4~6岁健康儿童作为对照组,记录相关临床指标。收集粪便标本,通过液-质联用非靶向代谢组学检测所有代谢产物。 结果 共检测出206种代谢产物,主要为氨基酸及其衍生物。试验组儿童肠道代谢产物整体构成与对照组差异有统计学意义(P<0.05)。共筛选出18种差异代谢产物,6种代谢产物(N-乙酰蛋氨酸、L-蛋氨酸、L-赖氨酸、DL-苯丙氨酸、L-酪氨酸和L-异亮氨酸)用于诊断OSAHS的受试者操作特征曲线下面积大于0.7。其中N-乙酰蛋氨酸曲线下面积最大,为0.807,灵敏度为70.83%,特异度为80.65%。差异代谢产物与临床指标相关性分析显示,扁桃体肿大程度与肠内酯,尿酸与苯乙醛,血糖与N-乙酰蛋氨酸,胆固醇与9-六溴二苯醚和普鲁卡因呈正相关(P<0.05);扁桃体肿大程度与N-甲基酪胺,AST与吲哚丙烯酸和L-异亮氨酸,ALT与DL-苯丙氨酸、吲哚丙烯酸和L-异亮氨酸,尿酸与羟喹啉,尿素氮与N,N-二环己脲呈负相关(P<0.05)。差异代谢产物影响的代谢功能通路主要有核黄素代谢、精氨酸和脯氨酸代谢、泛酸和辅酶A生物合成、半胱氨酸和蛋氨酸代谢、赖氨酸降解和谷胱甘肽代谢等。 结论 4~6岁OSAHS患儿肠道代谢产物与代谢功能发生改变,主要为氨基酸代谢紊乱,筛选出的肠道差异代谢产物作为OSAHS生物标志物具有潜在的筛查诊断价值。

Abstract

Objective To study the characteristics and clinical value of intestinal metabolites in children aged 4-6 years with obstructive sleep apnea-hypopnea syndrome (OSAHS). Methods A total of 31 children aged 4-6 years with OSAHS were prospectively enrolled as the test group, and 24 healthy children aged 4-6 years were included as the control group. Relevant clinical indicators were recorded. Fecal samples were collected, and non-targeted metabolomics analysis using liquid chromatography-mass spectrometry was performed to detect all metabolites. Results A total of 206 metabolites were detected, mainly amino acids and their derivatives. There was a significant difference in the overall composition of intestinal metabolites between the test and control groups (P<0.05). Eighteen different metabolites were selected, among which six (N-acetylmethionine, L-methionine, L-lysine, DL-phenylalanine, L-tyrosine, and L-isoleucine) had receiver operating characteristic curve areas greater than 0.7 for diagnosing OSAHS. Among them, N-acetylmethionine had the largest area under the curve, which was 0.807, with a sensitivity of 70.83% and a specificity of 80.65%. Correlation analysis between different metabolites and clinical indicators showed that there were positive correlations between the degree of tonsil enlargement and enterolactone, between uric acid and phenylacetaldehyde, between blood glucose and acetylmethionine, and between cholesterol and 9-bromodiphenyl and procaine (P<0.05). There were negative correlations between the degree of tonsil enlargement and N-methyltyramine, aspartate aminotransferase and indolepropionic acid and L-isoleucine, between alanine aminotransferase and DL-phenylalanine, between indolepropionic acid and L-isoleucine, between uric acid and hydroxyquinoline, and between urea nitrogen and N,N-dicyclohexylurea (P<0.05). The metabolic functional pathways affected by differential metabolites mainly included riboflavin metabolism, arginine and proline metabolism, pantothenic acid and coenzyme A biosynthesis, cysteine and methionine metabolism, lysine degradation and glutathione metabolism. Conclusions Intestinal metabolites and metabolic functions are altered in children aged 4-6 years with OSAHS, primarily involving amino acid metabolism disorders. The screened differential intestinal metabolites have potential screening and diagnostic value as biomarkers for OSAHS.

关键词

阻塞性睡眠呼吸暂停低通气综合征 / 肠道代谢产物 / 生物标志物 / 代谢功能 / 儿童

Key words

Obstructive sleep apnea-hypopnea syndrome / Intestinal metabolite / Biomarker / Metabolic function / Child

引用本文

导出引用
陈悦, 卢燕波, 吴军华, 邱海燕. 4~6岁阻塞性睡眠呼吸暂停低通气综合征患儿肠道代谢产物特征及临床价值分析[J]. 中国当代儿科杂志. 2024, 26(6): 575-583 https://doi.org/10.7499/j.issn.1008-8830.2309129
CHEN Yue, LU Yan-Bo, WU Jun-Hua, QIU Hai-Yan. Characteristics and clinical value of intestinal metabolites in children aged 4-6 years with obstructive sleep apnea-hypopnea syndrome[J]. Chinese Journal of Contemporary Pediatrics. 2024, 26(6): 575-583 https://doi.org/10.7499/j.issn.1008-8830.2309129

参考文献

1 Bitners AC, Arens R. Evaluation and management of children with obstructive sleep apnea syndrome[J]. Lung, 2020, 198(2): 257-270. PMID: 32166426. PMCID: PMC7171982. DOI: 10.1007/s00408-020-00342-5.
2 Lo Bue A, Salvaggio A, Insalaco G. Obstructive sleep apnea in developmental age. A narrative review[J]. Eur J Pediatr, 2020, 179(3): 357-365. PMID: 31940071. DOI: 10.1007/s00431-019-03557-8.
3 Marcus CL, Brooks LJ, Draper KA, et al. Diagnosis and management of childhood obstructive sleep apnea syndrome[J]. Pediatrics, 2012, 130(3): 576-584. PMID: 22926173. DOI: 10.1542/peds.2012-1671.
4 Menzies B, Teng A, Burns M, et al. Neurocognitive outcomes of children with sleep disordered breathing: a systematic review with meta-analysis[J]. Sleep Med Rev, 2022, 63: 101629. PMID: 35439720. DOI: 10.1016/j.smrv.2022.101629.
5 Gulotta G, Iannella G, Vicini C, et al. Risk factors for obstructive sleep apnea syndrome in children: state of the art[J]. Int J Environ Res Public Health, 2019, 16(18): 3235. PMID: 31487798. PMCID: PMC6765844. DOI: 10.3390/ijerph16183235.
6 Nowak N, Engler A, Thiel S, et al. Validation of breath biomarkers for obstructive sleep apnea[J]. Sleep Med, 2021, 85: 75-86. PMID: 34280868. DOI: 10.1016/j.sleep.2021.06.040.
7 Yoon DW, Shin HW. Sleep tests in the non-contact era of the COVID-19 pandemic: home sleep tests versus in-laboratory polysomnography[J]. Clin Exp Otorhinolaryngol, 2020, 13(4): 318-319. PMID: 33176398. PMCID: PMC7669320. DOI: 10.21053/ceo.2020.01599.
8 Zhang X, Wang S, Xu H, et al. Metabolomics and microbiome profiling as biomarkers in obstructive sleep apnoea: a comprehensive review[J]. Eur Respir Rev, 2021, 30(160): 200220. PMID: 33980666. PMCID: PMC9489097. DOI: 10.1183/16000617.0220-2020.
9 Bujak R, Struck-Lewicka W, Markuszewski MJ, et al. Metabolomics for laboratory diagnostics[J]. J Pharm Biomed Anal, 2015, 113: 108-120. PMID: 25577715. DOI: 10.1016/j.jpba.2014.12.017.
10 Xue J, Allaband C, Zhou D, et al. Influence of intermittent hypoxia/hypercapnia on atherosclerosis, gut microbiome, and metabolome[J]. Front Physiol, 2021, 12: 663950. PMID: 33897472. PMCID: PMC8060652. DOI: 10.3389/fphys.2021.663950.
11 Allaband C, Lingaraju A, Martino C, et al. Intermittent hypoxia and hypercapnia alter diurnal rhythms of luminal gut microbiome and metabolome[J]. mSystems, 2021, 6(3): e0011621. PMID: 34184915. PMCID: PMC8269208. DOI: 10.1128/mSystems.00116-21.
12 Wu J, Lu Y, Cai X, et al. Gut microbiota dysbiosis in 4- to 6-year-old children with obstructive sleep apnea-hypopnea syndrome[J]. Pediatr Pulmonol, 2022, 57(9): 2012-2022. PMID: 35580999. DOI: 10.1002/ppul.25967.
13 中国儿童OSA诊断与治疗指南制订工作组, 中华医学会耳鼻咽喉头颈外科学分会小儿学组, 中华医学会儿科学分会呼吸学组, 等. 中国儿童阻塞性睡眠呼吸暂停诊断与治疗指南(2020)[J]. 中国循证医学杂志, 2020, 20(8): 883-900. DOI: 10.7507/1672-2531.202005147.
14 Ko CY, Liu QQ, Su HZ, et al. Gut microbiota in obstructive sleep apnea-hypopnea syndrome: disease-related dysbiosis and metabolic comorbidities[J]. Clin Sci (Lond), 2019, 133(7): 905-917. PMID: 30957778. PMCID: PMC6465302. DOI: 10.1042/CS20180891.
15 Liu G, Li J, Li Y, et al. Gut microbiota-derived metabolites and risk of coronary artery disease: a prospective study among US men and women[J]. Am J Clin Nutr, 2021, 114(1): 238-247. PMID: 33829245. PMCID: PMC8277432. DOI: 10.1093/ajcn/nqab053.
16 Yu L, Xu Q, Wang P, et al. Secoisolariciresinol diglucoside-derived metabolite, enterolactone, attenuates atopic dermatitis by suppressing Th2 immune response[J]. Int Immunopharmacol, 2022, 111: 109039. PMID: 35914449. DOI: 10.1016/j.intimp.2022.109039.
17 Magnúsdóttir S, Ravcheev D, de Crécy-Lagard V, et al. Systematic genome assessment of B-vitamin biosynthesis suggests co-operation among gut microbes[J]. Front Genet, 2015, 6: 148. PMID: 25941533. PMCID: PMC4403557. DOI: 10.3389/fgene.2015.00148.
18 Lau SK, Lam CW, Curreem SO, et al. Metabolomic profiling of Burkholderia pseudomallei using UHPLC-ESI-Q-TOF-MS reveals specific biomarkers including 4-methyl-5-thiazoleethanol and unique thiamine degradation pathway[J]. Cell Biosci, 2015, 5: 26. PMID: 26097677. PMCID: PMC4475313. DOI: 10.1186/s13578-015-0018-x.
19 Chen Z, Han S, Zhou D, et al. Effects of oral exposure to titanium dioxide nanoparticles on gut microbiota and gut-associated metabolism in vivo[J]. Nanoscale, 2019, 11(46): 22398-22412. PMID: 31738363.DOI: 10.1039/c9nr07580a.
20 Jira W, Spiteller G, Carson W, et al. Strong increase in hydroxy fatty acids derived from linoleic acid in human low density lipoproteins of atherosclerotic patients[J]. Chem Phys Lipids, 1998, 91(1): 1-11. PMID: 9488997. DOI: 10.1016/s0009-3084(97)00095-9.
21 Corteselli EM, Gibbs-Flournoy E, Simmons SO, et al. Long chain lipid hydroperoxides increase the glutathione redox potential through glutathione peroxidase 4[J]. Biochim Biophys Acta Gen Subj, 2019, 1863(5): 950-959. PMID: 30844486. PMCID: PMC6823641. DOI: 10.1016/j.bbagen.2019.03.002.
22 Leroux M, Lemery T, Boulet N, et al. Effects of the amino acid derivatives, β-hydroxy-β-methylbutyrate, taurine, and N-methyltyramine, on triacylglycerol breakdown in fat cells[J]. J Physiol Biochem, 2019, 75(3): 263-273. PMID: 30919256. DOI: 10.1007/s13105-019-00677-5.
23 Choi HS, Kim SL, Kim JH, et al. Plant volatile, phenylacetaldehyde targets breast cancer stem cell by induction of ROS and regulation of Stat3 signal[J]. Antioxidants (Basel), 2020, 9(11): 1119. PMID: 33202749. PMCID: PMC7697623. DOI: 10.3390/antiox9111119.
24 Swietlik EM, Ghataorhe P, Zalewska KI, et al. Plasma metabolomics exhibit response to therapy in chronic thromboembolic pulmonary hypertension[J]. Eur Respir J, 2021, 57(4): 2003201. PMID: 33060150. PMCID: PMC8012591. DOI: 10.1183/13993003.03201-2020.
25 Naudí A, Caro P, Jové M, et al. Methionine restriction decreases endogenous oxidative molecular damage and increases mitochondrial biogenesis and uncoupling protein 4 in rat brain[J]. Rejuvenation Res, 2007, 10(4): 473-484. PMID: 17716000. DOI: 10.1089/rej.2007.0538.
26 Ren B, Wang L, Mulati A, et al. Methionine restriction improves gut barrier function by reshaping diurnal rhythms of Inflammation-Related microbes in aged mice[J]. Front Nutr, 2021, 8: 746592. PMID: 35004799. PMCID: PMC8733897. DOI: 10.3389/fnut.2021.746592.
27 Xu Z, Wu Y, Tai J, et al. Risk factors of obstructive sleep apnea syndrome in children[J]. J Otolaryngol Head Neck Surg, 2020, 49(1): 11. PMID: 32131901. PMCID: PMC7057627. DOI: 10.1186/s40463-020-0404-1.
28 Chuang HH, Hsu JF, Chuang LP, et al. Different associations between tonsil microbiome, chronic tonsillitis, and intermittent hypoxemia among obstructive sleep apnea children of different weight status: a pilot case-control study[J]. J Pers Med, 2021, 11(6): 486. PMID: 34071547. PMCID: PMC8227284. DOI: 10.3390/jpm11060486.
29 Sookoian S, Pirola CJ. Obstructive sleep apnea is associated with fatty liver and abnormal liver enzymes: a meta-analysis[J]. Obes Surg, 2013, 23(11): 1815-1825. PMID: 23740153. DOI: 10.1007/s11695-013-0981-4.
30 Byrne TJ, Parish JM, Somers V, et al. Evidence for liver injury in the setting of obstructive sleep apnea[J]. Ann Hepatol, 2012, 11(2): 228-231. PMID: 22345340.
31 Chen LD, Huang ZW, Huang YZ, et al. Untargeted metabolomic profiling of liver in a chronic intermittent hypoxia mouse model[J]. Front Physiol, 2021, 12: 701035. PMID: 34305653. PMCID: PMC8298499. DOI: 10.3389/fphys.2021.701035.
32 Wlodarska M, Luo C, Kolde R, et al. Indoleacrylic acid produced by commensal peptostreptococcus species suppresses inflammation[J]. Cell Host Microbe, 2017, 22(1): 25-37.e6. PMID: 28704649. PMCID: PMC5672633. DOI: 10.1016/j.chom.2017.06.007.
33 Wang F, Zou J, Xu H, et al. Effects of chronic intermittent hypoxia and chronic sleep fragmentation on gut microbiome, serum metabolome, liver and adipose tissue morphology[J]. Front Endocrinol (Lausanne), 2022, 13: 820939. PMID: 35178032. PMCID: PMC8846366. DOI: 10.3389/fendo.2022.820939.
34 Zeng Z, Jin T, Ni J, et al. Assessing the causal associations of obstructive sleep apnea with serum uric acid levels and gout: a bidirectional two-sample Mendelian randomization study[J]. Semin Arthritis Rheum, 2022, 57: 152095. PMID: 36126568. DOI: 10.1016/j.semarthrit.2022.152095.
35 Zhang X, Coker OO, Chu ES, et al. Dietary cholesterol drives fatty liver-associated liver cancer by modulating gut microbiota and metabolites[J]. Gut, 2021, 70(4): 761-774. PMID: 32694178. PMCID: PMC7948195. DOI: 10.1136/gutjnl-2019-319664.
36 Meslier V, Laiola M, Roager HM, et al. Mediterranean diet intervention in overweight and obese subjects lowers plasma cholesterol and causes changes in the gut microbiome and metabolome independently of energy intake[J]. Gut, 2020, 69(7): 1258-1268. PMID: 32075887. PMCID: PMC7306983. DOI: 10.1136/gutjnl-2019-320438.
37 Dong Y, Wang P, Lin J, et al. Characterization of fecal metabolome changes in patients with obstructive sleep apnea[J]. J Clin Sleep Med, 2022, 18(2): 575-586. PMID: 34534066. PMCID: PMC8804979. DOI: 10.5664/jcsm.9668.
38 Xu H, Li X, Zheng X, et al. Pediatric obstructive sleep apnea is associated with changes in the oral microbiome and urinary metabolomics profile: a pilot study[J]. J Clin Sleep Med, 2018, 14(9): 1559-1567. PMID: 30176961. PMCID: PMC6134247. DOI: 10.5664/jcsm.7336.
39 Zhang Y, Luo H, Niu Y, et al. Chronic intermittent hypoxia induces gut microbial dysbiosis and infers metabolic dysfunction in mice[J]. Sleep Med, 2022, 91: 84-92. PMID: 35286865. DOI: 10.1016/j.sleep.2022.02.003.

基金

浙江省医药卫生科技计划(2024KY1576);第一批宁波市临床医学研究中心依托单位(2019A21002);宁波市社会公益研究项目(2021S100);宁波市医学重点学科建设计划(2022-B17);宁波市医疗卫生高端团队项目(2022020405)。

PDF(2097 KB)
HTML

Accesses

Citation

Detail

段落导航
相关文章

/