目的 比较不同剂量人脐带间充质干细胞(human umbilical cord mesenchymal stem cells, hUC-MSCs)对新生大鼠脑白质损伤(white matter injury, WMI)的修复作用。 方法 将2日龄Sprague-Dawley新生大鼠随机分为5组:假手术组、WMI组和hUC-MSCs组(低剂量组、中剂量组、高剂量组),每组24只。成功制备新生大鼠WMI模型24 h后,WMI组经侧脑室注射无菌PBS,hUC-MSCs组注射不同剂量hUC-MSCs。造模后14 d、21 d,采用苏木精-伊红染色法观察各组侧脑室周围组织病理变化,实时荧光定量聚合酶链式反应法检测各组脑组织中髓鞘碱性蛋白(myelin basic protein, MBP)、胶质纤维酸性蛋白(glial fibrillary acidic protein, GFAP)mRNA表达水平,免疫组化法观察GFAP、神经元核蛋白(neuron-specific nuclear protein, NeuN)在侧脑室周围组织表达水平;TUNEL染色观察各组侧脑室周围组织细胞凋亡情况。造模后21 d,采用Morris水迷宫实验观察各组新生大鼠的空间学习记忆能力。 结果 造模后14 d、21 d,WMI组和低剂量组侧脑室周围组织均可见大量细胞核固缩、核破裂,神经纤维排列紊乱,与WMI组比较,中、高剂量组上述病理改变均减轻;与高剂量组比较,中剂量组神经纤维排列相对整齐。与WMI组比较,低剂量组MBP、GFAP mRNA表达水平差异无统计学意义(P>0.05),中、高剂量组MBP mRNA表达水平升高,GFAP mRNA表达水平降低;中剂量组MBP mRNA表达水平高于高剂量组,中剂量组GFAP mRNA表达水平低于高剂量组(P<0.05)。与WMI组比较,低剂量组GFAP、NeuN阳性表达差异无统计学意义(P>0.05),中、高剂量组NeuN阳性表达升高,GFAP阳性表达降低(P<0.05);中剂量组NeuN阳性表达高于高剂量组,GFAP阳性表达低于高剂量组(P<0.05)。与WMI组比较,低剂量组凋亡细胞数差异无统计学意义(P>0.05),中、高剂量组凋亡细胞数少于WMI组(P<0.05);中剂量组凋亡细胞数少于高剂量组(P<0.05)。与WMI组比较,低剂量组逃避潜伏期时间差异无统计学意义(P>0.05);自潜伏期第3天开始,中剂量组逃避潜伏期时间少于WMI组(P<0.05);中、高剂量组穿越平台次数多于WMI组(P<0.05)。 结论 低剂量hUC-MSCs对新生大鼠WMI修复效果欠佳,中、高剂量hUC-MSCs均有修复作用,中剂量效果更优。
Abstract
Objective To compare the repair effects of different doses of human umbilical cord mesenchymal stem cells (hUC-MSCs) on white matter injury (WMI) in neonatal rats. Methods Two-day-old Sprague-Dawley neonatal rats were randomly divided into five groups: sham operation group, WMI group, and hUC-MSCs groups (low dose, medium dose, and high dose), with 24 rats in each group. Twenty-four hours after successful establishment of the neonatal rat white matter injury model, the WMI group was injected with sterile PBS via the lateral ventricle, while the hUC-MSCs groups received injections of hUC-MSCs at different doses. At 14 and 21 days post-modeling, hematoxylin and eosin staining was used to observe pathological changes in the tissues around the lateral ventricles. Real-time quantitative polymerase chain reaction was used to detect the quantitative expression of myelin basic protein (MBP) and glial fibrillary acidic protein (GFAP) mRNA in the brain tissue. Immunohistochemistry was employed to observe the expression levels of GFAP and neuron-specific nuclear protein (NeuN) in the tissues around the lateral ventricles. TUNEL staining was used to observe cell apoptosis in the tissues around the lateral ventricles. At 21 days post-modeling, the Morris water maze test was used to observe the spatial learning and memory capabilities of the neonatal rats. Results At 14 and 21 days post-modeling, numerous cells with nuclear shrinkage and rupture, as well as disordered arrangement of nerve fibers, were observed in the tissues around the lateral ventricles of the WMI group and the low dose group. Compared with the WMI group, the medium and high dose groups showed alleviated pathological changes; the arrangement of nerve fibers in the medium dose group was relatively more orderly compared with the high dose group. Compared with the WMI group, there was no significant difference in the expression levels of MBP and GFAP mRNA in the low dose group (P>0.05), while the expression levels of MBP mRNA increased and GFAP mRNA decreased in the medium and high dose groups. The expression level of MBP mRNA in the medium dose group was higher than that in the high dose group, and the expression level of GFAP mRNA in the medium dose group was lower than that in the high dose group (P<0.05). Compared with the WMI group, there was no significant difference in the protein expression of GFAP and NeuN in the low dose group (P>0.05), while the expression of NeuN protein increased and GFAP protein decreased in the medium and high dose groups. The expression of NeuN protein in the medium dose group was higher than that in the high dose group, and the expression of GFAP protein in the medium dose group was lower than that in the high dose group (P<0.05). Compared with the WMI group, there was no significant difference in the number of apoptotic cells in the low dose group (P>0.05), while the number of apoptotic cells in the medium and high dose groups was less than that in the WMI group, and the number of apoptotic cells in the medium dose group was less than that in the high dose group (P<0.05). Compared with the WMI group, there was no significant difference in the escape latency time in the low dose group (P>0.05); starting from the third day of the latency period, the escape latency time in the medium dose group was less than that in the WMI group (P<0.05). The medium and high dose groups crossed the platform more times than the WMI group (P<0.05). Conclusions Low dose hUC-MSCs may yield unsatisfactory repair effects on WMI in neonatal rats, while medium and high doses of hUC-MSCs have significant repair effects, with the medium dose demonstrating superior efficacy.
关键词
脑白质损伤 /
人脐带间充质干细胞 /
剂量 /
新生大鼠
Key words
White matter injury /
Human umbilical cord mesenchymal stem cell /
Dose /
Neonatal rat
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
1 Walani SR. Global burden of preterm birth[J]. Int J Gynaecol Obstet, 2020, 150(1): 31-33. PMID: 32524596. DOI: 10.1002/ijgo.13195.
2 Jing S, Chen C, Gan Y, et al. Incidence and trend of preterm birth in China, 1990-2016: a systematic review and meta-analysis[J]. BMJ Open, 2020, 10(12): e039303. PMID: 33310797. PMCID: PMC7735132. DOI: 10.1136/bmjopen-2020-039303.
3 Rantakari K, Rinta-Koski OP, Mets?ranta M, et al. Early oxygen levels contribute to brain injury in extremely preterm infants[J]. Pediatr Res, 2021, 90(1): 131-139. PMID: 33753894. PMCID: PMC7984503. DOI: 10.1038/s41390-021-01460-3.
4 Romantsik O, Bruschettini M, Ley D. Intraventricular hemorrhage and white matter injury in preclinical and clinical studies[J]. Neoreviews, 2019, 20(11): e636-e652. PMID: 31676738. DOI: 10.1542/neo.20-11-e636.
5 Montaldo P, Ivain P, Lally P, et al. White matter injury after neonatal encephalopathy is associated with thalamic metabolite perturbations[J]. EBioMedicine, 2020, 52: 102663. PMID: 32062359. PMCID: PMC7016374. DOI: 10.1016/j.ebiom.2020.102663.
6 Reemst K, Noctor SC, Lucassen PJ, et al. The indispensable roles of microglia and astrocytes during brain development[J]. Front Hum Neurosci, 2016, 10: 566. PMID: 27877121. PMCID: PMC5099170. DOI: 10.3389/fnhum.2016.00566.
7 Bolte AC, Lukens JR. Neuroimmune cleanup crews in brain injury[J]. Trends Immunol, 2021, 42(6): 480-494. PMID: 33941486. PMCID: PMC8165004. DOI: 10.1016/j.it.2021.04.003.
8 Donega V, van Velthoven CT, Nijboer CH, et al. Intranasal mesenchymal stem cell treatment for neonatal brain damage: long-term cognitive and sensorimotor improvement[J]. PLoS One, 2013, 8(1): e51253. PMID: 23300948. PMCID: PMC3536775. DOI: 10.1371/journal.pone.0051253.
9 Fukuda Y, Horie N, Satoh K, et al. Intra-arterial transplantation of low-dose stem cells provides functional recovery without adverse effects after stroke[J]. Cell Mol Neurobiol, 2015, 35(3): 399-406. PMID: 25398358. DOI: 10.1007/s10571-014-0135-9.
10 周俊, 周德生. 移植不同剂量脐带间充质干细胞提高老年痴呆大鼠学习记忆能力的比较[J]. 中国组织工程研究, 2016, 20(50): 7524-7529. DOI: 10.3969/j.issn.2095-4344.2016.50.011.
11 巴依尔才次克, 王彦梅, 朱艳萍. 间充质干细胞移植改善脑室周围白质软化损伤作用的研究[J]. 实验动物科学, 2021, 38(2): 22-29. DOI: 10.3969/j.issn.1006-6179.2021.02.004.
12 Mueller M, Oppliger B, Joerger-Messerli M, et al. Wharton's jelly mesenchymal stem cells protect the immature brain in rats and modulate cell fate[J]. Stem Cells Dev, 2017, 26(4): 239-248. PMID: 27842457. DOI: 10.1089/scd.2016.0108.
13 刘慧娟, 戴王娟, 康树敏, 等. 骨髓间充质干细胞移植对缺氧缺血性脑损伤大鼠脑内肿瘤坏死因子-α及白细胞介素-1β水平的影响[J]. 中华围产医学杂志, 2016, 19(4): 301-307. DOI: 10.3760/cma.j.issn.1007-9408.2016.04.014.
14 Zhou X, Gu J, Gu Y, et al. Human umbilical cord-derived mesenchymal stem cells improve learning and memory function in hypoxic-ischemic brain-damaged rats via an IL-8-mediated secretion mechanism rather than differentiation pattern induction[J]. Cell Physiol Biochem, 2015, 35(6): 2383-2401. PMID: 25896602. DOI: 10.1159/000374040.
15 van Velthoven CT, Kavelaars A, van Bel F, et al. Repeated mesenchymal stem cell treatment after neonatal hypoxia-ischemia has distinct effects on formation and maturation of new neurons and oligodendrocytes leading to restoration of damage, corticospinal motor tract activity, and sensorimotor function[J]. J Neurosci, 2010, 30(28): 9603-9611. PMID: 20631189. PMCID: PMC6632441. DOI: 10.1523/JNEUROSCI.1835-10.2010.
16 van Velthoven CT, Kavelaars A, van Bel F, et al. Mesenchymal stem cell treatment after neonatal hypoxic-ischemic brain injury improves behavioral outcome and induces neuronal and oligodendrocyte regeneration[J]. Brain Behav Immun, 2010, 24(3): 387-393. PMID: 19883750. DOI: 10.1016/j.bbi.2009.10.017.
17 Wang LW, Chang YC, Lin CY, et al. Low-dose lipopolysaccharide selectively sensitizes hypoxic ischemia-induced white matter injury in the immature brain[J]. Pediatr Res, 2010, 68(1): 41-47. PMID: 20351655. PMCID: PMC3608684. DOI: 10.1203/PDR.0b013e3181df5f6b.
18 刘燕, 高俊杰, 孙梦雅, 等. 褪黑素对新生大鼠脑白质损伤的保护作用及机制研究[J]. 中华新生儿科杂志(中英文), 2023, 38(6): 359-364. DOI: 10.3760/cma.j.issn.2096-2932.2023.06.008.
19 赵方莹, 李礼. 小胶质细胞的发育调控[J]. 中国细胞生物学学报, 2019, 41(10): 1865-1875. DOI: 10.11844/cjcb.2019.10.0003.
20 Schneider J, Miller SP. Preterm brain injury: white matter injury[J]. Handb Clin Neurol, 2019, 162: 155-172. PMID: 31324309. DOI: 10.1016/B978-0-444-64029-1.00007-2.
21 McQuillen PS, Sheldon RA, Shatz CJ, et al. Selective vulnerability of subplate neurons after early neonatal hypoxia-ischemia[J]. J Neurosci, 2003, 23(8): 3308-3315. PMID: 12716938. PMCID: PMC6742293. DOI: 10.1523/JNEUROSCI.23-08-03308.2003.
22 Roberson R, Woodard JE, Toso L, et al. Postnatal inflammatory rat model for cerebral palsy: too different from humans[J]. Am J Obstet Gynecol, 2006, 195(4): 1038-1044. PMID: 17000237. DOI: 10.1016/j.ajog.2006.06.046.
23 Mallard C, Hagberg H. Inflammation-induced preconditioning in the immature brain[J]. Semin Fetal Neonatal Med, 2007, 12(4): 280-286. PMID: 17327146. DOI: 10.1016/j.siny.2007.01.014.
24 杨丽, 曹云涛, 井秀杰, 等. 不同缺血方式制作新生大鼠脑室周围白质软化模型伴随眼部病变观察[J]. 中国儿童保健杂志, 2014, 22(7): 705-708. DOI: 10.11852/zgetbjzz2014-22-07-12.
25 贺月秋, 陈惠金, 钱龙华, 等. 不同缺氧时间制作新生大鼠脑室周围白质软化动物模型的比较[J]. 中国比较医学杂志, 2009, 19(12): 10-13. DOI: 10.3969/j.issn.1671-7856.2009.12.003.
26 范玉颖, 刘波, 王华, 等. 新生期缺氧缺血性脑白质损伤大鼠模型比较研究[J]. 中国小儿急救医学, 2013, 20(2): 153-158. DOI: 10.3760/cma.j.issn.1673-4912.2013.02.012.
27 Yin X, Zhao J, Jiang H, et al. Impact of xenon on CLIC4 and Bcl-2 expression in lipopolysaccharide and hypoxia-ischemia-induced periventricular white matter damage[J]. Neonatology, 2018, 113(4): 339-346. PMID: 29518790. DOI: 10.1159/000487220.
28 Fields RD. Neuroscience. change in the brain's white matter[J]. Science, 2010, 330(6005): 768-769. PMID: 21051624. PMCID: PMC3201847. DOI: 10.1126/science.1199139.
29 林凌, 张更, 林巧梅, 等. 新生大鼠缺氧缺血脑白质损伤模型学习记忆能力的变化[J]. 解剖学报, 2016, 47(6): 738-743. DOI: 10.16098/j.issn.0529-1356.2016.06.003.
30 Xie P, Deng M, Sun QG, et al. Therapeutic effect of transplantation of human bone marrow?derived mesenchymal stem cells on neuron regeneration in a rat model of middle cerebral artery occlusion[J]. Mol Med Rep, 2019, 20(4): 3065-3074. PMID: 31432152. PMCID: PMC6755237. DOI: 10.3892/mmr.2019.10536.
31 De Simone U, Spinillo A, Caloni F, et al. Neuron-like cells generated from human umbilical cord lining-derived mesenchymal stem cells as a new in vitro model for neuronal toxicity screening: using magnetite nanoparticles as an example[J]. Int J Mol Sci, 2019, 21(1): 271. PMID: 31906090. PMCID: PMC6982086. DOI: 10.3390/ijms21010271.
32 张德双, 白小红, 陈大鹏, 等. 人脐带间充质干细胞移植对新生大鼠缺氧缺血性脑损伤的保护作用[J]. 中国当代儿科杂志, 2014, 16(9): 927-932. PMID: 25229962. DOI: 10.7499/j.issn.1008-8830.2014.09.013.
33 范雪, 白小红, 陈娟, 等. 脑室内移植hUC-MSCs对缺氧缺血性脑损伤新生大鼠的保护作用[J]. 四川大学学报(医学版), 2017, 48(2): 179-185. PMID: 28612523. DOI: 10.13464/j.scuxbyxb.2017.02.002.
34 Jiao Y, Sun YT, Chen NF, et al. Human umbilical cord-derived mesenchymal stem cells promote repair of neonatal brain injury caused by hypoxia/ischemia in rats[J]. Neural Regen Res, 2022, 17(11): 2518-2525. PMID: 35535905. PMCID: PMC9120712. DOI: 10.4103/1673-5374.339002.
35 Otani N, Nawashiro H, Fukui S, et al. Enhanced hippocampal neurodegeneration after traumatic or kainate excitotoxicity in GFAP-null mice[J]. J Clin Neurosci, 2006, 13(9): 934-938. PMID: 17085299. DOI: 10.1016/j.jocn.2005.10.018.
36 Guo Z, Zhang L, Wu Z, et al. In vivo direct reprogramming of reactive glial cells into functional neurons after brain injury and in an Alzheimer's disease model[J]. Cell Stem Cell, 2014, 14(2): 188-202. PMID: 24360883. PMCID: PMC3967760. DOI: 10.1016/j.stem.2013.12.001.
37 Back SA, Luo NL, Borenstein NS, et al. Late oligodendrocyte progenitors coincide with the developmental window of vulnerability for human perinatal white matter injury[J]. J Neurosci, 2001, 21(4): 1302-1312. PMID: 11160401. PMCID: PMC6762224. DOI: 10.1523/JNEUROSCI.21-04-01302.2001.
38 Xu J, Feng Z, Wang X, et al. hUC-MSCs exert a neuroprotective effect via anti-apoptotic mechanisms in a neonatal HIE rat model[J]. Cell Transplant, 2019, 28(12): 1552-1559. PMID: 31512502. PMCID: PMC6923563. DOI: 10.1177/0963689719874769.
39 Kaminska A, Radoszkiewicz K, Rybkowska P, et al. Interaction of neural stem cells (NSCs) and mesenchymal stem cells (MSCs) as a promising approach in brain study and nerve regeneration[J]. Cells, 2022, 11(9): 1464. PMID: 35563770. PMCID: PMC9105617. DOI: 10.3390/cells11091464.
基金
国家自然科学基金(地区科学基金项目82060288)。