高海拔地区健康足月新生儿脑氧代谢及脑电活动差异的多中心临床研究方案

泽碧, 高瑾, 赵晓芬, 李杨方, 张铁松, 刘晓梅, 毛辉, 秦明彩, 张奕, 杨永礼, 和春叶, 赵燕, 杜琨, 刘玲, 周文浩,中国高原新生儿医学联盟

中国当代儿科杂志 ›› 2024, Vol. 26 ›› Issue (4) : 403-409.

PDF(876 KB)
PDF(876 KB)
中国当代儿科杂志 ›› 2024, Vol. 26 ›› Issue (4) : 403-409. DOI: 10.7499/j.issn.1008-8830.2310102
研究方案

高海拔地区健康足月新生儿脑氧代谢及脑电活动差异的多中心临床研究方案

  • 泽碧1, 高瑾2, 赵晓芬2, 李杨方2, 张铁松3, 刘晓梅3, 毛辉4, 秦明彩5, 张奕6, 杨永礼7, 和春叶8, 赵燕9, 杜琨2, 刘玲2, 周文浩1,10,中国高原新生儿医学联盟
作者信息 +

Cerebral oxygen metabolism and brain electrical activity of healthy full-term neonates in high-altitude areas: a multicenter clinical research protocol

  • ZE Bi1, GAO Jin2, ZHAO Xiao-Fen2, LI Yang-Fang2, ZHANG Tie-Song3, LIU Xiao-Mei3, MAO Hui4, QIN Ming-Cai5, ZHANG Yi6, YANG Yong-Li7, HE Chun-Ye8, ZHAO Yan9, DU Kun2, LIU Lin2, ZHOU Wen-Hao1,10,Chinese High Altitude Neonatal Medicine Alliance CASE REPORT
Author information +
文章历史 +

摘要

高原环境对新生儿神经功能的影响仍需进一步证据积累。通过无创脑近红外光谱技术和振幅整合脑电图检测技术可提供脑氧饱和度及脑电活动数据。该研究通过对不同海拔梯度健康足月新生儿生后3 d内不同时间点进行多次近红外光谱技术、振幅整合脑电图监测,将测得的脑氧饱和度、脑电活动数据在不同海拔间进行比较,并建立相应的参考值范围。该研究包括6家中国高原新生儿医学联盟参与单位,根据所在地海拔分为4个海拔梯度,分别是800 m、1 900 m、2 400 m和3 500 m,每个海拔梯度预计样本量170人。该多中心前瞻性队列研究将为高原环境对新生儿早期脑功能及代谢的影响提供证据支持。

Abstract

Further evidence is needed to explore the impact of high-altitude environments on the neurologic function of neonates. Non-invasive techniques such as cerebral near-infrared spectroscopy and amplitude-integrated electroencephalography can provide data on cerebral oxygenation and brain electrical activity. This study will conduct multiple cerebral near-infrared spectroscopy and amplitude-integrated electroencephalography monitoring sessions at various time points within the first 3 days postpartum for healthy full-term neonates at different altitudes. The obtained data on cerebral oxygenation and brain electrical activity will be compared between different altitudes, and corresponding reference ranges will be established. The study involves 6 participating centers in the Chinese High Altitude Neonatal Medicine Alliance, with altitude gradients divided into 4 categories: 800 m, 1 900 m, 2 400 m, and 3 500 m, with an anticipated sample size of 170 neonates per altitude gradient. This multicenter prospective cohort study aims to provide evidence supporting the impact of high-altitude environments on early brain function and metabolism in neonates.

关键词

近红外光谱 / 脑组织氧饱和度 / 振幅整合脑电图 / 高原 / 新生儿

Key words

Near-infrared spectroscopy / Cerebral oxygenation / Amplitude-integrated electroencephalography / High altitude / Neonate

引用本文

导出引用
泽碧, 高瑾, 赵晓芬, 李杨方, 张铁松, 刘晓梅, 毛辉, 秦明彩, 张奕, 杨永礼, 和春叶, 赵燕, 杜琨, 刘玲, 周文浩,中国高原新生儿医学联盟. 高海拔地区健康足月新生儿脑氧代谢及脑电活动差异的多中心临床研究方案[J]. 中国当代儿科杂志. 2024, 26(4): 403-409 https://doi.org/10.7499/j.issn.1008-8830.2310102
ZE Bi, GAO Jin, ZHAO Xiao-Fen, LI Yang-Fang, ZHANG Tie-Song, LIU Xiao-Mei, MAO Hui, QIN Ming-Cai, ZHANG Yi, YANG Yong-Li, HE Chun-Ye, ZHAO Yan, DU Kun, LIU Lin, ZHOU Wen-Hao,Chinese High Altitude Neon. Cerebral oxygen metabolism and brain electrical activity of healthy full-term neonates in high-altitude areas: a multicenter clinical research protocol[J]. Chinese Journal of Contemporary Pediatrics. 2024, 26(4): 403-409 https://doi.org/10.7499/j.issn.1008-8830.2310102

参考文献

1 Tremblay JC, Ainslie PN. Global and country-level estimates of human population at high altitude[J]. Proc Natl Acad Sci U S A, 2021, 118(18): e2102463118. PMID: 33903258. PMCID: PMC8106311. DOI: 10.1073/pnas.2102463118.
2 Carpenter TC, Niermeyer S, Durmowicz AG. Altitude-related illness in children[J]. Curr Probl Pediatr, 1998, 28(6): 181-198. PMID: 9699083. DOI: 10.1016/s0045-9380(98)80066-2.
3 Wagner PD. Altitude physiology then (1921) and now (2021): meat on the bones[J]. Physiol Rev, 2022, 102(1): 323-332. PMID: 34569263. DOI: 10.1152/physrev.00033.2021.
4 Basak N, Thangaraj K. High-altitude adaptation: role of genetic and epigenetic factors[J]. J Biosci, 2021, 46: 107. PMID: 34840149.
5 Julian CG. High altitude during pregnancy[J]. Clin Chest Med, 2011, 32(1): 21-31. PMID: 21277446. DOI: 10.1016/j.ccm.2010.10.008.
6 Niermeyer S, Andrade Mollinedo P, Huicho L. Child health and living at high altitude[J]. Arch Dis Child, 2009, 94(10): 806-811. PMID: 19066173. DOI: 10.1136/adc.2008.141838.
7 Zamudio S, Baumann MU, Illsley NP. Effects of chronic hypoxia in vivo on the expression of human placental glucose transporters[J]. Placenta, 2006, 27(1): 49-55. PMID: 16310037. PMCID: PMC4497571. DOI: 10.1016/j.placenta.2004.12.010.
8 Raichle ME. Two views of brain function[J]. Trends Cogn Sci, 2010, 14(4): 180-190. PMID: 20206576. DOI: 10.1016/j.tics.2010.01.008.
9 Aboouf MA, Thiersch M, Soliz J, et al. The brain at high altitude: from molecular signaling to cognitive performance[J]. Int J Mol Sci, 2023, 24(12): 10179. PMID: 37373327. PMCID: PMC10299449. DOI: 10.3390/ijms241210179.
10 Yan X. Cognitive impairments at high altitudes and adaptation[J]. High Alt Med Biol, 2014, 15(2): 141-145. PMID: 24949527. DOI: 10.1089/ham.2014.1009.
11 Hoiland RL, Howe CA, Coombs GB, et al. Ventilatory and cerebrovascular regulation and integration at high-altitude[J]. Clin Auton Res, 2018, 28(4): 423-435. PMID: 29574504. DOI: 10.1007/s10286-018-0522-2.
12 Davis JE, Wagner DR, Garvin N, et al. Cognitive and psychomotor responses to high-altitude exposure in sea level and high-altitude residents of Ecuador[J]. J Physiol Anthropol, 2015, 34(1): 2. PMID: 25649647. PMCID: PMC4320830. DOI: 10.1186/s40101-014-0039-x.
13 Saco-Pollitt C. Birth in the Peruvian Andes: physical and behavioral consequences in the neonate[J]. Child Dev, 1981, 52(3): 839-846. PMID: 7285656.
14 Baker PT. Human adaptation to high altitude[J]. Science, 1969, 163(3872): 1149-1156. PMID: 5765326. DOI: 10.1126/science.163.3872.1149.
15 Bender DE, Auer C, Baran J, et al. Assessment of infant and early childhood development in a periurban Bolivian population[J]. Int J Rehabil Res, 1994, 17(1): 75-81. PMID: 7525498. DOI: 10.1097/00004356-199403000-00009.
16 Hogan AM, Virues-Ortega J, Botti AB, et al. Development of aptitude at altitude[J]. Dev Sci, 2010, 13(3): 533-544. PMID: 20443973. DOI: 10.1111/j.1467-7687.2009.00909.x.
17 Virués-Ortega J, Bucks R, Kirkham FJ, et al. Changing patterns of neuropsychological functioning in children living at high altitude above and below 4000 m: a report from the bolivian children living at altitude (BoCLA) study[J]. Dev Sci, 2011, 14(5): 1185-1193. PMID: 21884333. DOI: 10.1111/j.1467-7687.2011.01064.x.
18 Rimoldi SF, Rexhaj E, Duplain H, et al. Acute and chronic altitude-induced cognitive dysfunction in children and adolescents[J]. J Pediatr, 2016, 169: 238-243. PMID: 26541425. DOI: 10.1016/j.jpeds.2015.10.009.
19 Hunter CL, Oei JL, Suzuki K, et al. Patterns of use of near-infrared spectroscopy in neonatal intensive care units: international usage survey[J]. Acta Paediatr, 2018, 107(7): 1198-1204. PMID: 29430749. DOI: 10.1111/apa.14271.
20 Weeke LC, Dix LML, Groenendaal F, et al. Severe hypercapnia causes reversible depression of aEEG background activity in neonates: an observational study[J]. Arch Dis Child Fetal Neonatal Ed, 2017, 102(5): F383-F388. PMID: 28130246. DOI: 10.1136/archdischild-2016-311770.
21 Meder U, Cseko AJ, Szakacs L, et al. Longitudinal analysis of amplitude-integrated electroencephalography for outcome prediction in hypoxic-ischemic encephalopathy[J]. J Pediatr, 2022, 246: 19-25.e5. PMID: 35430248. DOI: 10.1016/j.jpeds.2022.04.013.
22 Pichler G, Binder C, Avian A, et al. Reference ranges for regional cerebral tissue oxygen saturation and fractional oxygen extraction in neonates during immediate transition after birth[J]. J Pediatr, 2013, 163(6): 1558-1563. PMID: 23972642. DOI: 10.1016/j.jpeds.2013.07.007.
23 中华医学会儿科学分会围产专业委员会. 新生儿振幅整合脑电图临床应用专家共识[J]. 中华新生儿科杂志(中英文), 2019, 34(1): 3-7. DOI: 10.3760/cma.j.issn.2096-2932.2019.01.002.
24 Li Y, Ze B, Zhang T, et al. Oxygen saturation ranges for healthy newborns within 2 h at altitudes between 847 and 4,360 m: a prospective cohort study[J]. Neonatology, 2023, 120(1): 111-117. PMID: 36463855. DOI: 10.1159/000527266.
25 Crocker ME, Hossen S, Goodman D, et al. Effects of high altitude on respiratory rate and oxygen saturation reference values in healthy infants and children younger than 2 years in four countries: a cross-sectional study[J]. Lancet Glob Health, 2020, 8(3): e362-e373. PMID: 32087173. PMCID: PMC7034060. DOI: 10.1016/S2214-109X(19)30543-1.
26 Guo F, Tang S, Guo T, et al. Revised threshold values for neonatal oxygen saturation at mild and moderate altitudes[J]. Acta Paediatr, 2020, 109(2): 321-326. PMID: 31393023. DOI: 10.1111/apa.14962.
27 Gonzales GF, Salirrosas A. Arterial oxygen saturation in healthy newborns delivered at term in Cerro de Pasco (4 340 m) and Lima (150 m)[J]. Reprod Biol Endocrinol, 2005, 3: 46. PMID: 16156890. PMCID: PMC1215518. DOI: 10.1186/1477-7827-3-46.
28 Gassmann NN, van Elteren HA, Goos TG, et al. Pregnancy at high altitude in the Andes leads to increased total vessel density in healthy newborns[J]. J Appl Physiol (1985), 2016, 121(3): 709-715. PMID: 27445300. PMCID: PMC5142254. DOI: 10.1152/japplphysiol.00561.2016.
29 Ze B, Liu L, Yang Jin GS, et al. Near-infrared spectroscopy monitoring of cerebral oxygenation and influencing factors in neonates from high-altitude areas[J]. Neonatology, 2021, 118(3): 348-353. PMID: 34107488. DOI: 10.1159/000514403.
30 Richardson C, Hogan AM, Bucks RS, et al. Neurophysiological evidence for cognitive and brain functional adaptation in adolescents living at high altitude[J]. Clin Neurophysiol, 2011, 122(9): 1726-1734. PMID: 21377415. DOI: 10.1016/j.clinph.2011.02.001.
31 West JB. High Life: A History of High-Altitude Physiology and Medicine[M]. New York: Springer New York, 1998.
32 Luks AM, Hackett PH. Medical conditions and high-altitude travel[J]. N Engl J Med, 2022, 386(4): 364-373. PMID: 35081281. DOI: 10.1056/NEJMra2104829.
33 中国高原新生儿联盟, 泽碧, 高瑾, 等. 云南高原地区健康足月新生儿脉搏血氧饱和度和脐动脉血气值的横断面调查[J]. 中国循证儿科杂志, 2022, 17(6): 432-437. DOI: 10.3969/j.issn.1673-5501.2022.06.005.
34 Homan RW, Herman J, Purdy P. Cerebral location of international 10-20 system electrode placement[J]. Electroencephalogr Clin Neurophysiol, 1987, 66(4): 376-382. PMID: 2435517. DOI: 10.1016/0013-4694(87)90206-9.
35 O' Toole JM, Boylan GB. NEURAL: quantitative features for newborn EEG using Matlab[EB/OL]. (2017-04-19)[2023-5-19]. https://arxiv.org/abs/1704.05694.
36 Dong X, Kong Y, Xu Y, et al. Development and validation of Auto-Neo-electroencephalography (EEG) to estimate brain age and predict report conclusion for electroencephalography monitoring data in neonatal intensive care units[J]. Ann Transl Med, 2021, 9(16): 1290. PMID: 34532427. PMCID: PMC8422089. DOI: 10.21037/atm-21-1564.
37 Ferrari M, Mottola L, Quaresima V. Principles, techniques, and limitations of near infrared spectroscopy[J]. Can J Appl Physiol, 2004, 29(4): 463-487. PMID: 15328595. DOI: 10.1139/h04-031.
38 Jopling J, Henry E, Wiedmeier SE, et al. Reference ranges for hematocrit and blood hemoglobin concentration during the neonatal period: data from a multihospital health care system[J]. Pediatrics, 2009, 123(2): e333-e337. PMID: 19171584. DOI: 10.1542/peds.2008-2654.
39 Bao XL, Yu RJ, Li ZS, et al. Twenty-item behavioral neurological assessment for normal newborns in 12 cities of China[J]. Chin Med J (Engl), 1991, 104(9): 742-746. PMID: 1935355.
40 Chen YJ, Liu C, Huang LL, et al. First-trimester blood concentrations of drinking water trihalomethanes and neonatal neurobehavioral development in a Chinese birth cohort[J]. J Hazard Mater, 2019, 362: 451-457. PMID: 30265976. DOI: 10.1016/j.jhazmat.2018.09.040.
41 Cole TJ, Green PJ. Smoothing reference centile curves: the LMS method and penalized likelihood[J]. Stat Med, 1992, 11(10): 1305-1319. PMID: 1518992. DOI: 10.1002/sim.4780111005.

基金

国家自然科学基金资助项目(82060291);云南省周文浩专家工作站(2019IC052)。

PDF(876 KB)

Accesses

Citation

Detail

段落导航
相关文章

/