伴中枢神经系统症状的单基因遗传性肾小球疾病的研究进展

王英, 何庆南

中国当代儿科杂志 ›› 2024, Vol. 26 ›› Issue (6) : 652-658.

PDF(592 KB)
HTML
PDF(592 KB)
HTML
中国当代儿科杂志 ›› 2024, Vol. 26 ›› Issue (6) : 652-658. DOI: 10.7499/j.issn.1008-8830.2312054
综述

伴中枢神经系统症状的单基因遗传性肾小球疾病的研究进展

  • 王英1, 何庆南2
作者信息 +

Research progress on monogenic inherited glomerular diseases with central nervous system symptoms

  • WANG Ying, HE Qing-Nan
Author information +
文章历史 +

摘要

至今为止,已报道约500种单基因遗传性肾脏病,其中50多个基因与单基因孤立性或综合征性肾病综合征的发病相关,这些基因大多在肾小球足细胞中表达。神经系统症状为综合征性肾病综合征常见的肾外表现,各种研究发现足细胞和神经元在形态和功能方面存在联系。该综述总结了同时出现肾小球和中枢神经系统病变的单基因遗传病的遗传学进展及临床特点,有助于提高临床医生对该类疾病的了解,认识基因诊断技术对共病筛查的重要性,降低漏诊、误诊率。

Abstract

To date, approximately 500 monogenic inherited kidney diseases have been reported, with more than 50 genes associated with the pathogenesis of monogenic isolated or syndromic nephrotic syndrome. Most of these genes are expressed in podocytes of the glomerulus. Neurological symptoms are common extrarenal manifestations of syndromic nephrotic syndrome, and various studies have found connections between podocytes and neurons in terms of morphology and function. This review summarizes the genetic and clinical characteristics of monogenic inherited diseases with concomitant glomerular and central nervous system lesions, aiming to enhance clinicians' understanding of such diseases, recognize the importance of genetic diagnostic techniques for comorbidity screening, and reduce the rates of missed diagnosis and misdiagnosis.

关键词

肾小球疾病 / 中枢神经系统 / 单基因遗传病

Key words

Glomerular disease / Central nervous system / Monogenic inherited disease

引用本文

导出引用
王英, 何庆南. 伴中枢神经系统症状的单基因遗传性肾小球疾病的研究进展[J]. 中国当代儿科杂志. 2024, 26(6): 652-658 https://doi.org/10.7499/j.issn.1008-8830.2312054
WANG Ying, HE Qing-Nan. Research progress on monogenic inherited glomerular diseases with central nervous system symptoms[J]. Chinese Journal of Contemporary Pediatrics. 2024, 26(6): 652-658 https://doi.org/10.7499/j.issn.1008-8830.2312054

参考文献

1 Arora V, Anand K, Chander Verma I. Genetic testing in pediatric kidney disease[J]. Indian J Pediatr, 2020, 87(9): 706-715. PMID: 32056192. DOI: 10.1007/s12098-020-03198-y.
2 匡新宇, 黄文彦. 儿童遗传性肾脏病的分类及诊治进展[J]. 诊断学理论与实践, 2021, 20(2): 117-124. DOI: 10.16150/j.1671-2870.2021.02.001.
3 Connaughton DM, Kennedy C, Shril S, et al. Monogenic causes of chronic kidney disease in adults[J]. Kidney Int, 2019, 95(4): 914-928. PMID: 30773290. PMCID: PMC6431580. DOI: 10.1016/j.kint.2018.10.031.
4 Sambharia M, Rastogi P, Thomas CP. Monogenic focal segmental glomerulosclerosis: a conceptual framework for identification and management of a heterogeneous disease[J]. Am J Med Genet C Semin Med Genet, 2022, 190(3): 377-398. PMID: 35894442. PMCID: PMC9796580. DOI: 10.1002/ajmg.c.31990.
5 Boyer O, Mollet G, Dorval G. Neurological disorders and hereditary podocytopathies: some fascinating pathophysiological overlaps[J]. Med Sci (Paris), 2023, 39(3): 246-252. PMID: 36943121. DOI: 10.1051/medsci/2023029.
6 Trautmann A, Lipska-Zi?tkiewicz BS, Schaefer F. Exploring the clinical and genetic spectrum of steroid resistant nephrotic syndrome: the PodoNet registry[J]. Front Pediatr, 2018, 6: 200. PMID: 30065916. PMCID: PMC6057105. DOI: 10.3389/fped.2018.00200.
7 Boyer O, Mollet G, Dorval G. Neurological involvement in monogenic podocytopathies[J]. Pediatr Nephrol, 2021, 36(11): 3571-3583. PMID: 33791874. DOI: 10.1007/s00467-020-04903-x.
8 Galloway WH, Mowat AP. Congenital microcephaly with hiatus hernia and nephrotic syndrome in two sibs[J]. J Med Genet, 1968, 5(4): 319-321. PMID: 5713646. PMCID: PMC1468664. DOI: 10.1136/jmg.5.4.319.
9 Al-Rakan MA, Abothnain MD, Alrifai MT, et al. Extending the ophthalmological phenotype of Galloway-Mowat syndrome with distinct retinal dysfunction: a report and review of ocular findings[J]. BMC Ophthalmol, 2018, 18(1): 147. PMID: 29929488. PMCID: PMC6013877. DOI: 10.1186/s12886-018-0820-4.
10 Jiang C, Gai N, Zou Y, et al. WDR73 missense mutation causes infantile onset intellectual disability and cerebellar hypoplasia in a consanguineous family[J]. Clin Chim Acta, 2017, 464: 24-29. PMID: 27983999. DOI: 10.1016/j.cca.2016.10.029.
11 El Younsi M, Kraoua L, Meddeb R, et al. WDR73-related Galloway Mowat syndrome with collapsing glomerulopathy[J]. Eur J Med Genet, 2019, 62(9): 103550. PMID: 30315938. DOI: 10.1016/j.ejmg.2018.10.002.
12 Racine J, Golden R. A patient diagnosed with Galloway-Mowat syndrome presenting with a rod-cone functional anomaly with electronegative dark-adapted ERGs[J]. Doc Ophthalmol, 2021, 143(1): 75-83. PMID: 33548032. DOI: 10.1007/s10633-021-09820-4.
13 Braun DA, Rao J, Mollet G, et al. Mutations in KEOPS-complex genes cause nephrotic syndrome with primary microcephaly[J]. Nat Genet, 2017, 49(10): 1529-1538. PMID: 28805828. PMCID: PMC5819591. DOI: 10.1038/ng.3933.
14 Liu TL, Lin SP, Zenker M, et al. X-linked recessive Galloway-Mowat syndrome 2 caused by a specific LAGE3 variant[J]. Pediatr Neonatol, 2023, 64(2): 208-209. PMID: 36682911. DOI: 10.1016/j.pedneo.2022.09.005.
15 Chen Y, Yang Y, Yang Y, et al. Diagnosis delay a family of Galloway-Mowat Syndrome caused by a classical splicing mutation of Lage3[J]. BMC Nephrol, 2023, 24(1): 29. PMID: 36755238. PMCID: PMC9909869. DOI: 10.1186/s12882-022-03000-5.
16 Baker E, Weaver D, Massengill S, et al. An unusual case of nephrotic syndrome in a microcephalic infant: answers[J]. Pediatr Nephrol, 2019, 34(11): 2327-2329. PMID: 31069511. DOI: 10.1007/s00467-019-04261-3.
17 Huang L, Zhang X, Zhang Y, et al. Novel LAGE3 pathogenic variants combined with TRPC6 and NUP160 variants in Galloway-Mowat syndrome: a case report[J]. Case Rep Nephrol Dial, 2023, 13(1): 148-155. PMID: 37900929. PMCID: PMC10601869. DOI: 10.1159/000533580.
18 Wang PZT, Prasad C, Rodriguez Cuellar CI, et al. Nephrological and urological complications of homozygous c.974G>A (p.Arg325Gln) OSGEP mutations[J]. Pediatr Nephrol, 2018, 33(11): 2201-2204. PMID: 30141175. DOI: 10.1007/s00467-018-4060-x.
19 Domingo-Gallego A, Furlano M, Pybus M, et al. Novel homozygous OSGEP gene pathogenic variants in two unrelated patients with Galloway-Mowat syndrome: case report and review of the literature[J]. BMC Nephrol, 2019, 20(1): 126. PMID: 30975089. PMCID: PMC6458604. DOI: 10.1186/s12882-019-1317-y.
20 Teng H, Liang C, Liang D, et al. Novel variants in OSGEP leading to Galloway-Mowat syndrome by altering its subcellular localization[J]. Clin Chim Acta, 2021, 523: 297-303. PMID: 34666032. DOI: 10.1016/j.cca.2021.10.012.
21 Joshi A, Sinha A, Sharma A, et al. Next-generation sequencing for congenital nephrotic syndrome: a multi-center cross-sectional study from India[J]. Indian Pediatr, 2021, 58(5): 445-451. PMID: 33980730.
22 Baker T, Caylor R, Wang J, et al. Neuropathologic findings in Galloway-Mowat syndrome 3 with a novel OSGEP variant[J]. J Neuropathol Exp Neurol, 2022, 81(11): 947-949. PMID: 36063408. DOI: 10.1093/jnen/nlac077.
23 Xu S, Hu L, Yang L, et al. Galloway-Mowat syndrome type 3 caused by OSGEP gene variants: a case report and literature review[J]. Front Pediatr, 2022, 10: 899991. PMID: 35783322. PMCID: PMC9249162. DOI: 10.3389/fped.2022.899991.
24 Ali Alghamdi M, Benabdelkamel H, Masood A, et al. Genomic, proteomic, and phenotypic spectrum of novel O-sialoglycoprotein endopeptidase variant in four affected individuals with Galloway-Mowat syndrome[J]. Front Genet, 2022, 13: 806190. PMID: 35812735. PMCID: PMC9259880. DOI: 10.3389/fgene.2022.806190.
25 杨莹, 陆妹, 沈彤, 等. OSGEP基因变异致Galloway-Mowat综合征1例并文献复习[J]. 中华新生儿科杂志(中英文), 2023, 38(5): 283-288. DOI: 10.3760/cma.j.issn.2096-2932.2023.05.006.
26 Esmaeilzadeh E, Moradi A, Khorram Khorshid HR. Whole-exome sequencing revealed a novel homozygous missense variant in OSGEP gene: a case report of Galloway-Mowat syndrome in Iran[J]. CEN Case Rep, 2023, 12(4): 374-377. PMID: 36856752. PMCID: PMC10620368. DOI: 10.1007/s13730-023-00775-w.
27 Hyun HS, Kim SH, Park E, et al. A familial case of Galloway-Mowat syndrome due to a novel TP53RK mutation: a case report[J]. BMC Med Genet, 2018, 19(1): 131. PMID: 30053862. PMCID: PMC6063015. DOI: 10.1186/s12881-018-0649-y.
28 史卓, 高春林, 夏正坤, 等. Galloway-Mowat综合征一例[J]. 中华肾脏病杂志, 2020, 36(2): 145-147. DOI: 10.3760/cma.j.issn.1001-7097.2020.02.012.
29 Treimer E, Kalayci T, Schumann S, et al. Functional characterization of a novel TP53RK mutation identified in a family with Galloway-Mowat syndrome[J]. Hum Mutat, 2022, 43(12): 1866-1871. PMID: 36116039. DOI: 10.1002/humu.24472.
30 Chen J, Ye GB, Huang JR, et al. Novel TP53RK variants cause varied clinical features of Galloway-Mowat syndrome without nephrotic syndrome in three unrelated Chinese patients[J]. Front Mol Neurosci, 2023, 16: 1116949. PMID: 36873107. PMCID: PMC9977797. DOI: 10.3389/fnmol.2023.1116949.
31 Braun DA, Shril S, Sinha A, et al. Mutations in WDR4 as a new cause of Galloway-Mowat syndrome[J]. Am J Med Genet A, 2018, 176(11): 2460-2465. PMID: 30079490. PMCID: PMC6289609. DOI: 10.1002/ajmg.a.40489.
32 Kim H, Lee H, Lee YM. A case of Galloway-Mowat syndrome with novel compound heterozygous variants in the WDR4 gene[J]. J Genet Med, 2020, 17(2): 97-101. DOI: 10.5734/JGM.2020.17.2.97.
33 Rosti RO, Sotak BN, Bielas SL, et al. Homozygous mutation in NUP107 leads to microcephaly with steroid-resistant nephrotic condition similar to Galloway-Mowat syndrome[J]. J Med Genet, 2017, 54(6): 399-403. PMID: 28280135. DOI: 10.1136/jmedgenet-2016-104237.
34 Braun DA, Lovric S, Schapiro D, et al. Mutations in multiple components of the nuclear pore complex cause nephrotic syndrome[J]. J Clin Invest, 2018, 128(10): 4313-4328. PMID: 30179222. PMCID: PMC6159964. DOI: 10.1172/JCI98688.
35 Fujita A, Tsukaguchi H, Koshimizu E, et al. Homozygous splicing mutation in NUP133 causes Galloway-Mowat syndrome[J]. Ann Neurol, 2018, 84(6): 814-828. PMID: 30427554. DOI: 10.1002/ana.25370.
36 Arrondel C, Missoury S, Snoek R, et al. Defects in t6A tRNA modification due to GON7 and YRDC mutations lead to Galloway-Mowat syndrome[J]. Nat Commun, 2019, 10(1): 3967. PMID: 31481669. PMCID: PMC6722078. DOI: 10.1038/s41467-019-11951-x.
37 Schmidt J, Goergens J, Pochechueva T, et al. Biallelic variants in YRDC cause a developmental disorder with progeroid features[J]. Hum Genet, 2021, 140(12): 1679-1693. PMID: 34545459. PMCID: PMC8553732. DOI: 10.1007/s00439-021-02347-3.
38 Tilley FC, Arrondel C, Chhuon C, et al. Disruption of pathways regulated by integrator complex in Galloway-Mowat syndrome due to WDR73 mutations[J]. Sci Rep, 2021, 11(1): 5388. PMID: 33686175. PMCID: PMC7940485. DOI: 10.1038/s41598-021-84472-7.
39 Li H, Liu F, Kuang H, et al. WDR73 depletion destabilizes PIP4K2C activity and impairs focal adhesion formation in Galloway-Mowat syndrome[J]. Biology (Basel), 2022, 11(10): 1397. PMID: 36290302. PMCID: PMC9598763. DOI: 10.3390/biology11101397.
40 Jin X, Guan Z, Hu N, et al. Structural insight into how WDR4 promotes the tRNA N7-methylguanosine methyltransferase activity of METTL1[J]. Cell Discov, 2023, 9(1): 65. PMID: 37369656. PMCID: PMC10300002. DOI: 10.1038/s41421-023-00562-y.
41 Li M, Yue Z, Lin H, et al. COQ2 mutation associated isolated nephropathy in two siblings from a Chinese pedigree[J]. Ren Fail, 2021, 43(1): 97-101. PMID: 33397173. PMCID: PMC7801106. DOI: 10.1080/0886022X.2020.1864402.
42 Abdelhakim AH, Dharmadhikari AV, Ragi SD, et al. Compound heterozygous inheritance of two novel COQ2 variants results in familial coenzyme Q deficiency[J]. Orphanet J Rare Dis, 2020, 15(1): 320. PMID: 33187544. PMCID: PMC7662744. DOI: 10.1186/s13023-020-01600-8.
43 Nam DW, Park SS, Lee SM, et al. Effects of CoQ10 replacement therapy on the audiological characteristics of pediatric patients with COQ6 variants[J]. Biomed Res Int, 2022, 2022: 5250254. PMID: 36124066. PMCID: PMC9482153. DOI: 10.1155/2022/5250254.
44 Stallworth JY, Blair DR, Slavotinek A, et al. Retinopathy and optic atrophy in a case of COQ2-related primary coenzyme Q10 deficiency[J]. Ophthalmic Genet, 2023, 44(5): 486-490. PMID: 36420660. PMCID: PMC10205914. DOI: 10.1080/13816810.2022.2141792.
45 Wang N, Zheng Y, Zhang L, et al. A family segregating lethal primary coenzyme Q10 deficiency due to two novel COQ6 variants[J]. Front Genet, 2021, 12: 811833. PMID: 35111204. PMCID: PMC8802230. DOI: 10.3389/fgene.2021.811833.
46 Schijvens AM, van de Kar NC, Bootsma-Robroeks CM, et al. Mitochondrial disease and the kidney with a special focus on CoQ10 deficiency[J]. Kidney Int Rep, 2020, 5(12): 2146-2159. PMID: 33305107. PMCID: PMC7710892. DOI: 10.1016/j.ekir.2020.09.044.
47 Hiser W, Thirumala V, Wang J, et al. Pierson syndrome in an infant with congenital nephrotic syndrome and unique brain pathology[J]. Kidney Int Rep, 2020, 5(12): 2371-2374. PMID: 33305134. PMCID: PMC7710838. DOI: 10.1016/j.ekir.2020.09.023.
48 Suzuki R, Sakakibara N, Ichikawa Y, et al. Systematic review of clinical characteristics and genotype-phenotype correlation in LAMB2-associated disease[J]. Kidney Int Rep, 2023, 8(9): 1811-1821. PMID: 37705905. PMCID: PMC10496080. DOI: 10.1016/j.ekir.2023.06.019.
49 Nishiyama K, Kurokawa M, Torio M, et al. Gastrointestinal symptoms as an extended clinical feature of Pierson syndrome: a case report and review of the literature[J]. BMC Med Genet, 2020, 21(1): 80. PMID: 32295525. PMCID: PMC7160948. DOI: 10.1186/s12881-020-01019-9.
50 Lin MH, Miller JB, Kikkawa Y, et al. Laminin-521 protein therapy for glomerular basement membrane and podocyte abnormalities in a model of Pierson syndrome[J]. J Am Soc Nephrol, 2018, 29(5): 1426-1436. PMID: 29472414. PMCID: PMC5967757. DOI: 10.1681/ASN.2017060690.
51 Yang S, He Y, Zhou J, et al. Steroid-resistant nephrotic syndrome associated with certain SGPL1 variants in a family: case report and literature review[J]. Front Pediatr, 2023, 11: 1079758. PMID: 36873630. PMCID: PMC9978203. DOI: 10.3389/fped.2023.1079758.
52 Roa-Bautista A, Sohail M, Wakeling E, et al. Combined novel homozygous variants in both SGPL1 and STAT1 presenting with severe combined immune deficiency: case report and literature review[J]. Front Immunol, 2023, 14: 1186575. PMID: 37377976. PMCID: PMC10291229. DOI: 10.3389/fimmu.2023.1186575.
53 Tastemel Ozturk T, Canpolat N, Saygili S, et al. A rare cause of nephrotic syndrome-sphingosine-1-phosphate lyase (SGPL1) deficiency: 6 cases and a review of the literature[J]. Pediatr Nephrol, 2023, 38(3): 711-719. PMID: 35748945. DOI: 10.1007/s00467-022-05656-5.
54 Zhao P, Liu ID, Hodgin JB, et al. Responsiveness of sphingosine phosphate lyase insufficiency syndrome to vitamin B6 cofactor supplementation[J]. J Inherit Metab Dis, 2020, 43(5): 1131-1142. PMID: 32233035. PMCID: PMC8072405. DOI: 10.1002/jimd.12238.
55 Gee HY, Saisawat P, Ashraf S, et al. ARHGDIA mutations cause nephrotic syndrome via defective RHO GTPase signaling[J]. J Clin Invest, 2013, 123(8): 3243-3253. PMID: 23867502. PMCID: PMC3726174. DOI: 10.1172/JCI69134.
56 Lahrouchi N, George A, Ratbi I, et al. Homozygous frameshift mutations in FAT1 cause a syndrome characterized by colobomatous-microphthalmia, ptosis, nephropathy and syndactyly[J]. Nat Commun, 2019, 10(1): 1180. PMID: 30862798. PMCID: PMC6414540. DOI: 10.1038/s41467-019-08547-w.
57 Fabretti F, Tschernoster N, Erger F, et al. Expanding the spectrum of FAT1 nephropathies by novel mutations that affect hippo signaling[J]. Kidney Int Rep, 2021, 6(5): 1368-1378. PMID: 34013115. PMCID: PMC8116753. DOI: 10.1016/j.ekir.2021.01.023.
58 朱春华, 张爱华. 儿童遗传性肾脏病[J]. 中华儿科杂志, 2021, 59(9): 804-806. PMID: 34645225. DOI: 10.3760/cma.j.cn112140-20210719-00600.
59 Hays T, Groopman EE, Gharavi AG. Genetic testing for kidney disease of unknown etiology[J]. Kidney Int, 2020, 98(3): 590-600. PMID: 32739203. PMCID: PMC7784921. DOI: 10.1016/j.kint.2020.03.031.
60 Alharbi SA, Alshenqiti AM, Asiri AH, et al. The role of genetic testing in pediatric renal diseases: diagnostic, prognostic, and social implications[J]. Cureus, 2023, 15(8): e44490. PMID: 37664254. PMCID: PMC10471834. DOI: 10.7759/cureus.44490.

PDF(592 KB)
HTML

Accesses

Citation

Detail

段落导航
相关文章

/