目的 探讨2-甲氧基雌二醇(2-methoxyestradiol, 2ME)在新生大鼠缺氧性肺动脉高压中的保护作用。 方法 96只Wistar新生大鼠随机分为常氧组、缺氧组和缺氧+2ME组,每组随机分为3 d、7 d、14 d、21 d亚组,每个亚组8只。缺氧组和缺氧+2ME组分别予以每日皮下注射生理盐水和2ME(剂量240 μg/kg),常氧组在常氧环境下饲养,每日皮下注射生理盐水。直接测压法测量右心室收缩压(right ventricular systolic pressure, RVSP);苏木精-伊红染色观察肺血管形态,计算肺血管重塑指标肺小动脉中层血管壁厚度占血管外径的百分比(MT%)和肺小动脉中层截面积占血管总截面积的百分比(MA%);免疫组化法检测肺组织中缺氧诱导因子-1α(hypoxia-inducible factor-1α, HIF-1α)、增殖细胞核抗原(proliferating cell nuclear antigen, PCNA)蛋白表达水平;实时荧光定量聚合酶链反应检测HIF-1α、PCNA mRNA表达水平。 结果 与常氧组比较,缺氧3、7、14、21 d时缺氧组、缺氧+2ME组RVSP升高,HIF-1α、PCNA蛋白和mRNA表达水平上调(P<0.05),缺氧7、14、21 d时缺氧组MT%、MA%增加(P<0.05);与缺氧组比较,缺氧3、7、14、21 d时缺氧+2ME组RVSP降低,HIF-1α、PCNA蛋白和PCNA mRNA表达水平下调(P<0.05),缺氧7、14、21 d时缺氧+2ME组MT%、MA%减少(P<0.05)。 结论 2ME可能通过抑制HIF-1α、PCNA表达,减轻肺血管重塑,对新生大鼠缺氧性肺动脉高压发挥保护作用。
Abstract
Objective To investigate the protective effects of 2-methoxyestradiol (2ME) against hypoxic pulmonary hypertension (HPH) in neonatal rats. Methods Ninety-six Wistar neonatal rats were randomly divided into a normoxia group, a hypoxia group, and a hypoxia + 2ME group, with each group further subdivided into 3-day, 7-day, 14-day, and 21-day subgroups, containing eight rats each. The hypoxia and hypoxia + 2ME groups received daily subcutaneous injections of saline and 2ME (240 μg/kg), respectively, while the normoxia group was raised in a normoxic environment with daily saline injections. Right ventricular systolic pressure (RVSP) was measured using the direct pressure method. Pulmonary vascular morphology was assessed using hematoxylin and eosin staining, with metrics including the percentage of medial thickness of small pulmonary arteries relative to the external diameter (MT%) and the cross-sectional area of the media of small pulmonary arteries relative to the total cross-sectional area (MA%). Immunohistochemistry was used to detect the expression levels of hypoxia-inducible factor-1α (HIF-1α) and proliferating cell nuclear antigen (PCNA) proteins, while real-time quantitative PCR was used to to assess HIF-1α and PCNA mRNA levels. Results Compared to the normoxia group, the hypoxia and hypoxia + 2ME groups showed increased RVSP and upregulated HIF-1α and PCNA protein and mRNA expression levels at 3, 7, 14, and 21 days after hypoxia (P<0.05). Furthermore, at 7, 14, and 21 days after hypoxia, the hypoxia group showed increased MT% and MA% (P<0.05). In comparison to the hypoxia group, the hypoxia + 2ME group exhibited reduced RVSP and downregulated HIF-1α and PCNA protein and mRNA expression levels, along with decreased MT% and MA% at 7, 14, and 21 days after hypoxia (P<0.05). Conclusions 2ME may protect against HPH in neonatal rats by inhibiting the expression of HIF-1α and PCNA and reducing pulmonary vascular remodeling. Citation:Chinese Journal of Contemporary Pediatrics, 2024, 26(7): 757-764
关键词
缺氧性肺动脉高压 /
2-甲氧基雌二醇 /
缺氧诱导因子-1α /
新生大鼠
Key words
Hypoxic pulmonary hypertension /
2-Methoxyestradiol /
Hypoxia-inducible factor-1α /
Neonatal rat
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
1 Mandell E, Kinsella JP, Abman SH. Persistent pulmonary hypertension of the newborn[J]. Pediatr Pulmonol, 2021, 56(3): 661-669. PMID: 32930508. DOI: 10.1002/ppul.25073.
2 Zahid KR, Raza U, Chen J, et al. Pathobiology of pulmonary artery hypertension: role of long non-coding RNAs[J]. Cardiovasc Res, 2020, 116(12): 1937-1947. PMID: 32109276. DOI: 10.1093/cvr/cvaa050.
3 Awad KS, West JD, de Jesus Perez V, et al. Novel signaling pathways in pulmonary arterial hypertension (2015 Grover Conference Series)[J]. Pulm Circ, 2016, 6(3): 285-294. PMID: 27683605. PMCID: PMC5019081. DOI: 10.1086/688034.
4 Singh Y, Lakshminrusimha S. Pathophysiology and management of persistent pulmonary hypertension of the newborn[J]. Clin Perinatol, 2021, 48(3): 595-618. PMID: 34353582. PMCID: PMC8351908. DOI: 10.1016/j.clp.2021.05.009.
5 Cirulis MM, Dodson MW, Brown LM, et al. At the X-roads of sex and genetics in pulmonary arterial hypertension[J]. Genes (Basel), 2020, 11(11): 1371. PMID: 33233517. PMCID: PMC7699559. DOI: 10.3390/genes11111371.
6 郭鑫, 李明霞, 巴依尔才次克, 等. 血小板源性生长因子-BB对缺氧性肺动脉高压新生大鼠肺血管重塑的影响及机制研究[J]. 中国当代儿科杂志, 2023, 25(4): 407-414. PMID: 37073847. PMCID: PMC10120343. DOI: 10.7499/j.issn.1008-8830.2212002.
7 Huang N, Zhu TT, Liu T, et al. Aspirin ameliorates pulmonary vascular remodeling in pulmonary hypertension by dampening endothelial-to-mesenchymal transition[J]. Eur J Pharmacol, 2021, 908: 174307. PMID: 34245748. DOI: 10.1016/j.ejphar.2021.174307.
8 Cao J, Yang L, Wang L, et al. Heat shock protein 70 attenuates hypoxia?induced apoptosis of pulmonary microvascular endothelial cells isolated from neonatal rats[J]. Mol Med Rep, 2021, 24(4): 690. PMID: 34328190. PMCID: PMC8365595. DOI: 10.3892/mmr.2021.12327.
9 曹静, 罗佳媛, 吴典, 等. 血管内皮生长因子A对缺氧性肺动脉高压新生大鼠肺血管重塑的影响及其机制研究[J]. 中国当代儿科杂志, 2021, 23(1): 103-110. PMID: 33476546. PMCID: PMC7818150. DOI: 10.7499/j.issn.1008-8830.2009005.
10 Tofovic SP, Jackson EK. Estradiol metabolism: crossroads in pulmonary arterial hypertension[J]. Int J Mol Sci, 2019, 21(1): 116. PMID: 31877978. PMCID: PMC6982327. DOI: 10.3390/ijms21010116.
11 He S, Zhu T, Fang Z. The role and regulation of pulmonary artery smooth muscle cells in pulmonary hypertension[J]. Int J Hypertens, 2020, 2020: 1478291. PMID: 32850144. PMCID: PMC7441461. DOI: 10.1155/2020/1478291.
12 Montalva L, Antounians L, Zani A. Pulmonary hypertension secondary to congenital diaphragmatic hernia: factors and pathways involved in pulmonary vascular remodeling[J]. Pediatr Res, 2019, 85(6): 754-768. PMID: 30780153. DOI: 10.1038/s41390-019-0345-4.
13 Hao S, Jiang L, Fu C, et al. 2-Methoxyestradiol attenuates chronic-intermittent-hypoxia-induced pulmonary hypertension through regulating microRNA-223[J]. J Cell Physiol, 2019, 234(5): 6324-6335. PMID: 30246291. DOI: 10.1002/jcp.27363.
14 Docherty CK, Nilsen M, MacLean MR. Influence of 2-methoxyestradiol and sex on hypoxia-induced pulmonary hypertension and hypoxia-inducible factor-1-α[J]. J Am Heart Assoc, 2019, 8(5): e011628. PMID: 30819028. PMCID: PMC6474940. DOI: 10.1161/JAHA.118.011628.
15 Tofovic SP, Salah EM, Mady HH, et al. Estradiol metabolites attenuate monocrotaline-induced pulmonary hypertension in rats[J]. J Cardiovasc Pharmacol, 2005, 46(4): 430-437. PMID: 16160593. DOI: 10.1097/01.fjc.0000175878.32920.17.
16 Enazy SA, Kirschen GW, Vincent K, et al. PEGylated polymeric nanoparticles loaded with 2-methoxyestradiol for the treatment of uterine leiomyoma in a patient-derived xenograft mouse model[J]. J Pharm Sci, 2023, 112(9): 2552-2560. PMID: 37482124. PMCID: PMC10529399. DOI: 10.1016/j.xphs.2023.07.018.
17 Yu C, Li C, Pan H, et al. Preparation of 2-methoxyestradiol self-emulsified drug delivery system and the effect on combination therapy with doxorubicin against MCF-7/ADM cells[J]. AAPS PharmSciTech, 2022, 23(5): 147. PMID: 35585431. DOI: 10.1208/s12249-022-02298-6.
18 Pullamsetti SS, Mamazhakypov A, Weissmann N, et al. Hypoxia-inducible factor signaling in pulmonary hypertension[J]. J Clin Invest, 2020, 130(11): 5638-5651. PMID: 32881714. PMCID: PMC7598042. DOI: 10.1172/JCI137558.
19 王建荣, 周英, 桑葵, 等. 缺氧性肺动脉高压新生大鼠肺血管重塑与肺血管HIF-1α、ET-1、iNOS表达的相关性研究[J]. 中国当代儿科杂志, 2013, 15(2): 138-144. PMID: 23428131.
20 Wang L, Zheng Q, Yuan Y, et al. Effects of 17β-estradiol and 2-methoxyestradiol on the oxidative stress-hypoxia inducible factor-1 pathway in hypoxic pulmonary hypertensive rats[J]. Exp Ther Med, 2017, 13(5): 2537-2543. PMID: 28565876. PMCID: PMC5443199. DOI: 10.3892/etm.2017.4243.
21 Kumar S, Vaidya M. Hypoxia inhibits mesenchymal stem cell proliferation through HIF1α-dependent regulation of P27[J]. Mol Cell Biochem, 2016, 415(1/2): 29-38. PMID: 26920732. DOI: 10.1007/s11010-016-2674-5.