新生儿重症监护病房住院早产儿晚发型败血症抗生素使用推荐意见

湖南省新生儿医疗质量控制中心;湖南省医学会围产医学专业委员会新生儿学组

中国当代儿科杂志 ›› 2024, Vol. 26 ›› Issue (10) : 1009-1018.

PDF(678 KB)
HTML
PDF(678 KB)
HTML
中国当代儿科杂志 ›› 2024, Vol. 26 ›› Issue (10) : 1009-1018. DOI: 10.7499/j.issn.1008-8830.2408024
标准·方案·指南

新生儿重症监护病房住院早产儿晚发型败血症抗生素使用推荐意见

  • 湖南省新生儿医疗质量控制中心;湖南省医学会围产医学专业委员会新生儿学组
作者信息 +

Recommendations for antibiotic use in hospitalized preterm infants with late-onset sepsis in the neonatal intensive care unit

  • Hunan Neonatal Medical Quality Control Center; Neonatology Group of Perinatal Medical Committee of Hunan Medical Association
Author information +
文章历史 +

摘要

新生儿晚发型败血症(late-onset sepsis, LOS)多见于长期住院的新生儿,尤其是极低出生体重儿(very low birth weight infant, VLBWI)和超低出生体重儿(extremely low birth weight infant, ELBWI)。目前早产儿LOS面临着诊断和治疗不及时以及抗生素过度治疗的双重问题。为此,湖南省新生儿医疗质量控制中心和湖南省医学会围产医学专业委员会新生儿学组组织湖南省新生儿专家根据目前发表的文献和湖南省新生儿医疗质量控制中心统计的数据,并结合湖南省大部分新生儿重症监护病房的实际情况,对新生儿重症监护病房住院早产儿LOS的诊断和抗生素治疗提出了15条推荐意见。

Abstract

Late-onset sepsis (LOS) is commonly seen in neonates who are hospitalized for extended periods, particularly in very low birth weight infants (VLBWI) and extremely low birth weight infants (ELBWI). Currently, the management of LOS in preterm infants faces dual challenges of delayed diagnosis and treatment, as well as antibiotic overtreatment. To address these issues, the Hunan Neonatal Medical Quality Control Center and the Neonatology Group of Perinatal Medical Committee of Hunan Medical Association organized a group of neonatal experts from Hunan Province to formulate recommendations based on published literature and statistical data from the Hunan Neonatal Medical Quality Control Center, as well as real-world practices in most neonatal intensive care units in Hunan Province. The group of neonatal experts proposed 15 recommendations for the diagnosis and antibiotic treatment of LOS in hospitalized preterm infants in the neonatal intensive care unit.

关键词

晚发型败血症 / 新生儿重症监护病房 / 抗生素 / 推荐意见 / 早产儿

Key words

Late-onset sepsis / Neonatal intensive care unit / Antibiotic / Recommendation / Preterm infant

引用本文

导出引用
湖南省新生儿医疗质量控制中心;湖南省医学会围产医学专业委员会新生儿学组. 新生儿重症监护病房住院早产儿晚发型败血症抗生素使用推荐意见[J]. 中国当代儿科杂志. 2024, 26(10): 1009-1018 https://doi.org/10.7499/j.issn.1008-8830.2408024
Hunan Neonatal Medical Quality Control Center; Neonatology Group of Perinatal Medical Committee of Hunan Medical Association. Recommendations for antibiotic use in hospitalized preterm infants with late-onset sepsis in the neonatal intensive care unit[J]. Chinese Journal of Contemporary Pediatrics. 2024, 26(10): 1009-1018 https://doi.org/10.7499/j.issn.1008-8830.2408024

参考文献

1 Liu L, Oza S, Hogan D, et al. Global, regional, and national causes of under-5 mortality in 2000-15: an updated systematic analysis with implications for the sustainable development goals[J]. Lancet, 2016, 388(10063): 3027-3035. PMID: 27839855. PMCID: PMC5161777. DOI: 10.1016/S0140-6736(16)31593-8.
2 Liu Y, Kang L, He C, et al. Neonatal mortality and leading causes of deaths: a descriptive study in China, 2014-2018[J]. BMJ Open, 2021, 11(2): e042654. PMID: 33542043. PMCID: PMC7868219. DOI: 10.1136/bmjopen-2020-042654.
3 Bizzarro MJ, Raskind C, Baltimore RS, et al. Seventy-five years of neonatal sepsis at Yale: 1928-2003[J]. Pediatrics, 2005, 116(3): 595-602. PMID: 16140698. DOI: 10.1542/peds.2005-0552.
4 Coggins SA, Glaser K. Updates in late-onset sepsis: risk assessment, therapy, and outcomes[J]. Neoreviews, 2022, 23(11): 738-755. PMID: 36316254. PMCID: PMC9675597. DOI: 10.1542/neo.23-10-e738.
5 湖南省新生儿医疗质量控制中心, 湖南省医学会围产医学专业委员会新生儿学组. 早产儿早发型败血症的诊断与抗生素使用建议:湖南省新生儿科专家共识[J]. 中国当代儿科杂志, 2020, 22(1): 1-6. PMID: 31948515. PMCID: PMC7389710. DOI: 10.7499/j.issn.1008-8830.2020.01.001.
6 Hayes R, Hartnett J, Semova G, et al. Neonatal sepsis definitions from randomised clinical trials[J]. Pediatr Res, 2023, 93(5): 1141-1148. PMID: 34743180. PMCID: PMC10132965. DOI: 10.1038/s41390-021-01749-3.
7 Yang M, Peng Z, van Pul C, et al. Continuous prediction and clinical alarm management of late-onset sepsis in preterm infants using vital signs from a patient monitor[J]. Comput Methods Programs Biomed, 2024, 255: 108335. PMID: 39047574. DOI: 10.1016/j.cmpb.2024.108335.
8 Scheer CS, Fuchs C, Gründling M, et al. Impact of antibiotic administration on blood culture positivity at the beginning of sepsis: a prospective clinical cohort study[J]. Clin Microbiol Infect, 2019, 25(3): 326-331. PMID: 29879482. DOI: 10.1016/j.cmi.2018.05.016.
9 Rand KH, Beal SG, Rivera K, et al. Hourly effect of pretreatment with IV antibiotics on blood culture positivity rate in emergency department patients[J]. Open Forum Infect Dis, 2019, 6(5): ofz179. PMID: 31139670. PMCID: PMC6527085. DOI: 10.1093/ofid/ofz179.
10 Schelonka RL, Chai MK, Yoder BA, et al. Volume of blood required to detect common neonatal pathogens[J]. J Pediatr, 1996, 129(2): 275-278. PMID: 8765627. DOI: 10.1016/s0022-3476(96)70254-8.
11 Stoll BJ, Hansen N, Fanaroff AA, et al. To tap or not to tap: high likelihood of meningitis without sepsis among very low birth weight infants[J]. Pediatrics, 2004, 113(5): 1181-1186. PMID: 15121927. DOI: 10.1542/peds.113.5.1181.
12 Kanegaye JT, Soliemanzadeh P, Bradley JS. Lumbar puncture in pediatric bacterial meningitis: defining the time interval for recovery of cerebrospinal fluid pathogens after parenteral antibiotic pretreatment[J]. Pediatrics, 2001, 108(5): 1169-1174. PMID: 11694698.
13 Weitkamp JH, Aschner JL, Carlo WA, et al. Meningitis, urinary tract, and bloodstream infections in very low birth weight infants enrolled in a heart rate characteristics monitoring trial[J]. Pediatr Res, 2020, 87(7): 1226-1230. PMID: 31801155. PMCID: PMC7255929. DOI: 10.1038/s41390-019-0701-4.
14 Paul SP, Khattak H, Kini PK, et al. NICE guideline review: neonatal infection: antibiotics for prevention and treatment (NG195)[J]. Arch Dis Child Educ Pract Ed, 2022, 107(4): 292-297. PMID: 34772670. DOI: 10.1136/archdischild-2021-322349.
15 Downey LC, Benjamin DK, Clark RH, et al. Urinary tract infection concordance with positive blood and cerebrospinal fluid cultures in the neonatal intensive care unit[J]. J Perinatol, 2013, 33(4): 302-306. PMID: 22935772. PMCID: PMC3549035. DOI: 10.1038/jp.2012.111.
16 Srinivasan L, Harris MC. New technologies for the rapid diagnosis of neonatal sepsis[J]. Curr Opin Pediatr, 2012, 24(2): 165-171. PMID: 22273634. DOI: 10.1097/MOP.0b013e3283504df3.
17 Celik IH, Hanna M, Canpolat FE, et al. Diagnosis of neonatal sepsis: the past, present and future[J]. Pediatr Res, 2022, 91(2): 337-350. PMID: 34728808. PMCID: PMC8818018. DOI: 10.1038/s41390-021-01696-z.
18 Berenguer J, Buck M, Witebsky F, et al. Lysis-centrifugation blood cultures in the detection of tissue-proven invasive candidiasis. Disseminated versus single-organ infection[J]. Diagn Microbiol Infect Dis, 1993, 17(2): 103-109. PMID: 8243032. DOI: 10.1016/0732-8893(93)90020-8.
19 Morrell M, Fraser VJ, Kollef MH. Delaying the empiric treatment of Candida bloodstream infection until positive blood culture results are obtained: a potential risk factor for hospital mortality[J]. Antimicrob Agents Chemother, 2005, 49(9): 3640-3645. PMID: 16127033. PMCID: PMC1195428. DOI: 10.1128/AAC.49.9.3640-3645.2005.
20 Centre for Disease Control and Prevention. Late onset sepsis/Meningitis event[EB/OL]. [2024-05-06]. https://www.cdc.gov/nhsn/pdfs/neonatal/losmen/los-men-protocol-508.pdf.
21 Stoll BJ, Hansen N, Fanaroff AA, et al. Late-onset sepsis in very low birth weight neonates: the experience of the NICHD neonatal research network[J]. Pediatrics, 2002, 110(2 Pt 1): 285-291. PMID: 12165580. DOI: 10.1542/peds.110.2.285.
22 Vergnano S, Menson E, Kennea N, et al. Neonatal infections in England: the NeonIN surveillance network[J]. Arch Dis Child Fetal Neonatal Ed, 2011, 96(1): F9-F14. PMID: 20876594. DOI: 10.1136/adc.2009.178798.
23 Vermont Oxford Network. Global Health Neonatal Quality Improvement Database:Data Definitions & Infant Data Sheet forms[EB/OL]. [2024-08-01]. https://vtoxford.zendesk.com/hc/article_attachments/32169421969043.
24 The Canadian Neonatal NetworkTM. The Canadian neonatal network annual report 2022[EB/OL]. [2024-05-06]. http://www.canadianneonatalnetwork.org/portal/Portals/0/Annual%20Reports/2022%20CNN%20Annual%20Report.pdf
25 McGovern M, Giannoni E, Kuester H, et al. Challenges in developing a consensus definition of neonatal sepsis[J]. Pediatr Res, 2020, 88(1): 14-26. PMID: 32126571. DOI: 10.1038/s41390-020-0785-x.
26 Hornik CP, Benjamin DK, Becker KC, et al. Use of the complete blood cell count in late-onset neonatal sepsis[J]. Pediatr Infect Dis J, 2012, 31(8): 803-807. PMID: 22531232. PMCID: PMC3399981. DOI: 10.1097/INF.0b013e31825691e4.
27 Worku M, Aynalem M, Biset S, et al. Role of complete blood cell count parameters in the diagnosis of neonatal sepsis[J]. BMC Pediatr, 2022, 22(1): 411. PMID: 35831816. PMCID: PMC9277845. DOI: 10.1186/s12887-022-03471-3.
28 Glaser MA, Hughes LM, Jnah A, et al. Neonatal sepsis: a review of pathophysiology and current management strategies[J]. Adv Neonatal Care, 2021, 21(1): 49-60. PMID: 32956076. DOI: 10.1097/ANC.0000000000000769.
29 Stocker M, van Herk W, El Helou S, et al. Procalcitonin-guided decision making for duration of antibiotic therapy in neonates with suspected early-onset sepsis: a multicentre, randomised controlled trial (NeoPIns)[J]. Lancet, 2017, 390(10097): 871-881. PMID: 28711318. DOI: 10.1016/S0140-6736(17)31444-7.
30 Benitz WE, Han MY, Madan A, et al. Serial serum C-reactive protein levels in the diagnosis of neonatal infection[J]. Pediatrics, 1998, 102(4): E41. PMID: 9755278. DOI: 10.1542/peds.102.4.e41.
31 Eschborn S, Weitkamp JH. Procalcitonin versus C-reactive protein: review of kinetics and performance for diagnosis of neonatal sepsis[J]. J Perinatol, 2019, 39(7): 893-903. PMID: 30926891. DOI: 10.1038/s41372-019-0363-4.
32 中华医学会儿科学分会新生儿学组, 中国医师协会新生儿科医师分会感染专业委员会. 新生儿败血症诊断及治疗专家共识(2019年版)[J]. 中华儿科杂志, 2019, 57(4): 252-257. PMID: 30934196. DOI: 10.3760/cma.j.issn.0578-1310.2019.04.005.
33 Greenberg RG, Kandefer S, Do BT, et al. Late-onset sepsis in extremely premature infants: 2000-2011[J]. Pediatr Infect Dis J, 2017, 36(8): 774-779. PMID: 28709162. PMCID: PMC5627954. DOI: 10.1097/INF.0000000000001570.
34 K?stlin-Gille N, H?rtel C, Haug C, et al. Epidemiology of early and late onset neonatal sepsis in very low birthweight infants: data from the German neonatal network[J]. Pediatr Infect Dis J, 2021, 40(3): 255-259. PMID: 33538544. DOI: 10.1097/INF.0000000000002976.
35 Goldstein ND, Eppes SC, Ingraham BC, et al. Characteristics of late-onset sepsis in the NICU: does occupancy impact risk of infection?[J]. J Perinatol, 2016, 36(9): 753-757. PMID: 27149054. DOI: 10.1038/jp.2016.71.
36 Tsai MH, Hsu JF, Chu SM, et al. Incidence, clinical characteristics and risk factors for adverse outcome in neonates with late-onset sepsis[J]. Pediatr Infect Dis J, 2014, 33(1): e7-e13. PMID: 23899966. DOI: 10.1097/INF.0b013e3182a72ee0.
37 Jiang S, Yang C, Yang C, et al. Epidemiology and microbiology of late-onset sepsis among preterm infants in China, 2015-2018: a cohort study[J]. Int J Infect Dis, 2020, 96: 1-9. PMID: 32209419. DOI: 10.1016/j.ijid.2020.03.034.
38 Piening BC, Geffers C, Gastmeier P, et al. Pathogen-specific mortality in very low birth weight infants with primary bloodstream infection[J]. PLoS One, 2017, 12(6): e0180134. PMID: 28640920. PMCID: PMC5481023. DOI: 10.1371/journal.pone.0180134.
39 Dong Y, Speer CP, Glaser K. Beyond sepsis: Staphylococcus epidermidis is an underestimated but significant contributor to neonatal morbidity[J]. Virulence, 2018, 9(1): 621-633. PMID: 29405832. PMCID: PMC5955464. DOI: 10.1080/21505594.2017.1419117.
40 Cantey JB, Anderson KR, Kalagiri RR, et al. Morbidity and mortality of coagulase-negative staphylococcal sepsis in very-low-birth-weight infants[J]. World J Pediatr, 2018, 14(3): 269-273. PMID: 29536341. DOI: 10.1007/s12519-018-0145-7.
41 Yu YQ, He XR, Wan LJ, et al. Etiology, antimicrobial resistance, and risk factors of neonatal sepsis in China: a systematic review and meta-analysis from data of 30 years[J]. J Matern Fetal Neonatal Med, 2022, 35(25): 7541-7550. PMID: 34470123. DOI: 10.1080/14767058.2021.1951217.
42 Liu J, Fang Z, Yu Y, et al. Pathogens distribution and antimicrobial resistance in bloodstream infections in twenty-five neonatal intensive care units in China, 2017-2019[J]. Antimicrob Resist Infect Control, 2021, 10(1): 121. PMID: 34399840. PMCID: PMC8365905. DOI: 10.1186/s13756-021-00989-6.
43 Dong Y, Glaser K, Speer CP. Late-onset sepsis caused by gram-negative bacteria in very low birth weight infants: a systematic review[J]. Expert Rev Anti Infect Ther, 2019, 17(3): 177-188. PMID: 30640556. DOI: 10.1080/14787210.2019.1568871.
44 Shane AL, Sánchez PJ, Stoll BJ. Neonatal sepsis[J]. Lancet, 2017, 390(10104): 1770-1780. PMID: 28434651. DOI: 10.1016/S0140-6736(17)31002-4.
45 Mukhopadhyay S, Wade KC, Puopolo KM. Drugs for the prevention and treatment of sepsis in the newborn[J]. Clin Perinatol, 2019, 46(2): 327-347. PMID: 31010563. PMCID: PMC6485941. DOI: 10.1016/j.clp.2019.02.012.
46 Romanelli RM, Anchieta LM, Bueno E Silva AC, et al. Empirical antimicrobial therapy for late-onset sepsis in a neonatal unit with high prevalence of coagulase-negative Staphylococcus[J]. J Pediatr (Rio J), 2016, 92(5): 472-478. PMID: 27112033. DOI: 10.1016/j.jped.2016.01.008.
47 Hemels MA, van den Hoogen A, Verboon-Maciolek MA, et al. A seven-year survey of management of coagulase-negative staphylococcal sepsis in the neonatal intensive care unit: vancomycin may not be necessary as empiric therapy[J]. Neonatology, 2011, 100(2): 180-185. PMID: 21455008. DOI: 10.1159/000324852.
48 Procianoy RS, Silveira RC. The challenges of neonatal sepsis management[J]. J Pediatr (Rio J), 2020, 96(Suppl 1): 80-86. PMID: 31747556. PMCID: PMC9432313. DOI: 10.1016/j.jped.2019.10.004.
49 Patel SJ, Oshodi A, Prasad P, et al. Antibiotic use in neonatal intensive care units and adherence with centers for disease control and prevention 12 step campaign to prevent antimicrobial resistance[J]. Pediatr Infect Dis J, 2009, 28(12): 1047-1051. PMID: 19858773. PMCID: PMC4526135. DOI: 10.1097/INF.0b013e3181b12484.
50 Chen Q, Wan J, Shen W, et al. Optimal exposure targets for vancomycin in the treatment of neonatal coagulase-negative Staphylococcus infection: a retrospective study based on electronic medical records[J]. Pediatr Neonatol, 2022, 63(3): 247-254. PMID: 35190273. DOI: 10.1016/j.pedneo.2021.11.010.
51 《美罗培南治疗新生儿脓毒症的临床实践指南》制订组, 北京大学第三医院,《中国当代儿科杂志》编辑部,等. 美罗培南治疗新生儿脓毒症的临床实践指南(2024年版)[J]. 中国当代儿科杂志, 2024, 26(2): 107-117. PMID: 38436306. PMCID: PMC10921874. DOI: 10.7499/j.issn.1008-8830.2309059.
52 中国耳聋基因筛查与诊断临床多中心研究协作组, 中华耳鼻咽喉头颈外科杂志编辑委员会, 中华医学会耳鼻咽喉头颈外科学分会. 中国耳聋基因诊断与遗传咨询临床实践指南(2023)[J]. 中华耳鼻咽喉头颈外科杂志, 2023, 58(1): 3-14. PMID: 36603860. DOI: 10.3760/cma.j.cn115330-20220609-00342.
53 Schmatz M, Srinivasan L, Grundmeier RW, et al. Surviving sepsis in a referral neonatal intensive care unit: association between time to antibiotic administration and in-hospital outcomes[J]. J Pediatr, 2020, 217: 59-65.e1. PMID: 31604632. DOI: 10.1016/j.jpeds.2019.08.023.
54 Mukhopadhyay S, Briker SM, Flannery DD, et al. Time to positivity of blood cultures in neonatal late-onset bacteraemia[J]. Arch Dis Child Fetal Neonatal Ed, 2022, 107(6): 583-588. PMID: 35273079. PMCID: PMC9465986. DOI: 10.1136/archdischild-2021-323416.
55 Meem M, Modak JK, Mortuza R, et al. Biomarkers for diagnosis of neonatal infections: a systematic analysis of their potential as a point-of-care diagnostics[J]. J Glob Health, 2011, 1(2): 201-209. PMID: 23198119. PMCID: PMC3484777.
56 Cantey JB, Baird SD. Ending the culture of culture-negative sepsis in the neonatal ICU[J]. Pediatrics, 2017, 140(4): e20170044. PMID: 28928289. DOI: 10.1542/peds.2017-0044.
57 Bromiker R, Elron E, Klinger G. Do neonatal infections require a positive blood culture?[J]. Am J Perinatol, 2020, 37(S 02): S18-S21. PMID: 32898878. DOI: 10.1055/s-0040-1714079.

PDF(678 KB)
HTML

Accesses

Citation

Detail

段落导航
相关文章

/