特发性矮身材患儿的遗传机制及生长激素疗效探讨

米热古丽·买买提

中国当代儿科杂志 ›› 2024, Vol. 26 ›› Issue (12) : 1255-1260.

PDF(563 KB)
HTML
PDF(563 KB)
HTML
中国当代儿科杂志 ›› 2024, Vol. 26 ›› Issue (12) : 1255-1260. DOI: 10.7499/j.issn.1008-8830.2408040
系列述评——生长障碍疾病诊疗

特发性矮身材患儿的遗传机制及生长激素疗效探讨

  • 米热古丽·买买提
作者信息 +

Discussion on the genetic mechanisms and efficacy of growth hormone therapy in children with idiopathic short stature

  • MAMAT Mireguli
Author information +
文章历史 +

摘要

特发性矮身材(idiopathic short stature, ISS)是一组病因未明的矮小疾病的统称。ISS遗传因素复杂,目前已知的遗传机制包括激素、激素受体或相关途径的改变,基本细胞过程(细胞内信号通路、转录调节)、细胞外基质或旁分泌信号转导的缺陷,以及编码这些蛋白的基因变异等。重组人生长激素(recombinant human growth hormone, rhGH)替代治疗是目前临床用于改善ISS患儿身高的有效方法。但不同遗传机制的患儿应用rhGH治疗的效果存在差异。该文基于现有临床研究,对ISS的遗传机制以及rhGH的应用效果进行了分析与阐述,以提高对ISS的疾病认知,为改善ISS患儿身高提供参考。

Abstract

Idiopathic short stature (ISS) is a term that encompasses a group of short stature disorders with unknown etiology. The genetic factors associated with ISS are complex, and the known genetic mechanisms include alterations in hormones, hormone receptors, or related pathways, defects in fundamental cellular processes (such as intracellular signaling pathways and transcriptional regulation), issues with extracellular matrix or paracrine signaling, as well as genetic variations in the genes encoding these proteins. Recombinant human growth hormone (rhGH) therapy is currently an effective clinical method for improving height in children with ISS. However, the efficacy of rhGH treatment on ISS varies among children with different genetic mechanisms. This paper analyzes and elucidates the genetic mechanisms of ISS and the effects of rhGH on ISS based on existing clinical research, aiming to enhance the understanding of ISS and provide references for improving the height of these children.

关键词

特发性矮身材 / 基因变异 / 重组人生长激素 / 儿童

Key words

Idiopathic short stature / Genetic variation / Recombinant human growth hormone / Child

引用本文

导出引用
米热古丽·买买提. 特发性矮身材患儿的遗传机制及生长激素疗效探讨[J]. 中国当代儿科杂志. 2024, 26(12): 1255-1260 https://doi.org/10.7499/j.issn.1008-8830.2408040
MAMAT Mireguli. Discussion on the genetic mechanisms and efficacy of growth hormone therapy in children with idiopathic short stature[J]. Chinese Journal of Contemporary Pediatrics. 2024, 26(12): 1255-1260 https://doi.org/10.7499/j.issn.1008-8830.2408040

参考文献

1 中华医学会儿科学分会内分泌遗传代谢学组, 中国医师协会青春期健康与医学专业委员会, 福棠儿童医学发展研究中心, 等. 儿童特发性矮身材诊断与治疗中国专家共识[J]. 中国实用儿科杂志, 2023, 38(11): 801-813. DOI: 10.19538/j.ek2023110601.
2 Zhao Q, Zhang M, Li Y, et al. Molecular diagnosis is an important indicator for response to growth hormone therapy in children with short stature[J]. Clin Chim Acta, 2024, 554: 117779. PMID: 38220134. DOI: 10.1016/j.cca.2024.117779.
3 卫海燕. 从循证医学证据看生长激素促生长治疗的收益及风险[J]. 中国实用儿科杂志, 2021, 36(8): 607-612. DOI: 10.19538/j.ek2021080610.
4 Ross JL, Lee PA, Gut R, et al. Attaining genetic height potential: analysis of height outcomes from the ANSWER program in children treated with growth hormone over 5 years[J]. Growth Horm IGF Res, 2015, 25(6): 286-293. PMID: 26363846. DOI: 10.1016/j.ghir.2015.08.006.
5 Wu D, Chen RM, Chen SK, et al. Final adult height of children with idiopathic short stature: a multicenter study on GH therapy alone started during peri-puberty[J]. BMC Pediatr, 2020, 20(1): 138. PMID: 32222149. PMCID: PMC7102429. DOI: 10.1186/s12887-020-02034-8.
6 冯鑫, 王春林. 特发性矮小症多组学生物标志物的研究进展[J]. 国际儿科学杂志, 2023, 50(11): 746-749. DOI: 10.3760/cma.j.issn.1673-4408.2023.11.007.
7 Shao X, Le Stunff C, Cheung W, et al. Differentially methylated CpGs in response to growth hormone administration in children with idiopathic short stature[J]. Clin Epigenetics, 2022, 14(1): 65. PMID: 35585611. PMCID: PMC9118695. DOI: 10.1186/s13148-022-01281-z.
8 奚立, 罗飞宏. 从内分泌激素角度审视身材矮小的评估[J]. 中国实用儿科杂志, 2021, 36(8): 581-585. DOI: 10.19538/j.ek2021080605.
9 Andrade NLM, Cellin LP, Rezende RC, et al. Idiopathic short stature: what to expect from genomic investigations[J]. Endocrines, 2023, 4(1): 1-17. DOI: 10.3390/endocrines4010001.
10 苏杨. 重组人生长激素治疗特发性矮身材儿童的临床疗效及安全性分析[D]. 长春: 吉林大学, 2022.
11 Singh A, Pajni K, Panigrahi I, et al. Components of IGF-axis in growth disorders: a systematic review and patent landscape report[J]. Endocrine, 2022, 76(3): 509-525. PMID: 35523998. DOI: 10.1007/s12020-022-03063-2.
12 应艳琴, 梁雁. 儿童特发性矮身材的遗传学机制进展[J]. 中国实用儿科杂志, 2023, 38(11): 818-822. DOI: 10.19538/j.ek2023110603.
13 Vasques GA, Andrade NLM, Jorge AAL. Genetic causes of isolated short stature[J]. Arch Endocrinol Metab, 2019, 63(1): 70-78. PMID: 30864634. PMCID: PMC10118839. DOI: 10.20945/2359-3997000000105.
14 Kumar A, Jain V, Chowdhury MR, et al. Pathogenic/likely pathogenic variants in the SHOX, GHR and IGFALS genes among Indian children with idiopathic short stature[J]. J Pediatr Endocrinol Metab, 2020, 33(1): 79-88. PMID: 31834863. DOI: 10.1515/jpem-2019-0234.
15 Fujimoto M, Andrew M, Dauber A. Disorders caused by genetic defects associated with GH-dependent genes: PAPPA2 defects[J]. Mol Cell Endocrinol, 2020, 518: 110967. PMID: 32739295. PMCID: PMC7609568. DOI: 10.1016/j.mce.2020.110967.
16 朱高慧, 朱岷. 生长板相关的儿童原发性生长障碍[J]. 中国实用儿科杂志, 2023, 38(11): 823-828. DOI: 10.19538/j.ek2023110604.
17 Vasques GA, Funari MFA, Ferreira FM, et al. IHH gene mutations causing short stature with nonspecific skeletal abnormalities and response to growth hormone therapy[J]. J Clin Endocrinol Metab, 2018, 103(2): 604-614. PMID: 29155992. DOI: 10.1210/jc.2017-02026.
18 梁雁, 罗小平. 儿童矮身材遗传学诊断与研究的挑战和机遇[J]. 中华儿科杂志, 2020, 58(6): 443-446. PMID: 32521954. DOI: 10.3760/cma.j.cn112140-20200421-00415.
19 Stavber L, Gaia MJ, Hovnik T, et al. Heterozygous NPR2 variants in idiopathic short stature[J]. Genes (Basel), 2022, 13(6): 1065. PMID: 35741827. PMCID: PMC9222219. DOI: 10.3390/genes13061065.
20 Li X, Yao R, Chang G, et al. Clinical profiles and genetic spectra of 814 Chinese children with short stature[J]. J Clin Endocrinol Metab, 2022, 107(4): 972-985. PMID: 34850017. PMCID: PMC8947318. DOI: 10.1210/clinem/dgab863.
21 Inzaghi E, Reiter E, Cianfarani S. The challenge of defining and investigating the causes of idiopathic short stature and finding an effective therapy[J]. Horm Res Paediatr, 2019, 92(2): 71-83. PMID: 31578025. DOI: 10.1159/000502901.
22 Hu X, Gui B, Su J, et al. Novel pathogenic ACAN variants in non-syndromic short stature patients[J]. Clin Chim Acta, 2017, 469: 126-129. PMID: 28396070. DOI: 10.1016/j.cca.2017.04.004.
23 ??klar Z, Kocaay P, ?amtosun E, et al. The effect of recombinant growth hormone treatment in children with idiopathic short stature and low insulin-like growth factor-1 levels[J]. J Clin Res Pediatr Endocrinol, 2015, 7(4): 301-306. PMID: 26777041. PMCID: PMC4805225. DOI: 10.4274/jcrpe.2111.
24 Monzani A, Babu D, Mellone S, et al. Co-occurrence of genomic imbalances on Xp22.1 in the SHOX region and 15q25.2 in a girl with short stature, precocious puberty, urogenital malformations and bone anomalies[J]. BMC Med Genomics, 2019, 12(1): 5. PMID: 30626445. PMCID: PMC6327496. DOI: 10.1186/s12920-018-0445-8.
25 Sandoval GT, Jaimes GC, Barrios MC, et al. SHOX gene and conserved noncoding element deletions/duplications in Colombian patients with idiopathic short stature[J]. Mol Genet Genomic Med, 2014, 2(2): 95-102. PMID: 24689071. PMCID: PMC3960050. DOI: 10.1002/mgg3.39.
26 Bakker B, Frane J, Anhalt H, et al. Height velocity targets from the national cooperative growth study for first-year growth hormone responses in short children[J]. J Clin Endocrinol Metab, 2008, 93(2): 352-357. PMID: 18000092. DOI: 10.1210/jc.2007-1581.
27 S?vendahl L, Polak M, Backeljauw P, et al. Treatment of children with GH in the United States and Europe: long-term follow-up from NordiNet? IOS and ANSWER program[J]. J Clin Endocrinol Metab, 2019, 104(10): 4730-4742. PMID: 31305924. PMCID: PMC6812718. DOI: 10.1210/jc.2019-00775.
28 Wu B, Lin H, Gao J, et al. Effects of high-dose recombinant human growth hormone treatment on IGF-1 and IGFBP-3 levels in idiopathic dwarfism patients[J]. Pak J Med Sci, 2022, 38(4Part/II): 1038-1042. PMID: 35634620. PMCID: PMC9121936. DOI: 10.12669/pjms.38.4.5502.
29 Yuan K, Chen J, Chen Q, et al. NPR2 gene variants in familial short stature: a single-center study[J]. J Pediatr Endocrinol Metab, 2022, 35(2): 185-190. PMID: 34565054. DOI: 10.1515/jpem-2021-0332.
30 Plachy L, Dusatkova P, Maratova K, et al. NPR2 variants are frequent among children with familiar short stature and respond well to growth hormone therapy[J]. J Clin Endocrinol Metab, 2020, 105(3): dgaa037. PMID: 31990356. DOI: 10.1210/clinem/dgaa037.
31 Ke X, Liang H, Miao H, et al. Clinical characteristics of Short-Stature patients with an NPR2 mutation and the therapeutic response to rhGH[J]. J Clin Endocrinol Metab, 2021, 106(2): 431-441. PMID: 33205215. DOI: 10.1210/clinem/dgaa842.
32 Lin L, Li M, Luo J, et al. A high proportion of novel ACAN mutations and their prevalence in a large cohort of Chinese short stature children[J]. J Clin Endocrinol Metab, 2021, 106(7): e2711-e2719. PMID: 33606014. PMCID: PMC8208663. DOI: 10.1210/clinem/dgab088.
33 Sun J, Jiang L, Liu G, et al. Evaluation of growth hormone therapy in seven Chinese children with familial short stature caused by novel ACAN variants[J]. Front Pediatr, 2022, 10: 819074. PMID: 35330881. PMCID: PMC8940281. DOI: 10.3389/fped.2022.819074.
34 Savage MO, Storr HL. GH resistance is a component of idiopathic short stature: implications for rhGH therapy[J]. Front Endocrinol (Lausanne), 2021, 12: 781044. PMID: 34956092. PMCID: PMC8702638. DOI: 10.3389/fendo.2021.781044.

PDF(563 KB)
HTML

Accesses

Citation

Detail

段落导航
相关文章

/