二代测序在新生儿疾病早期筛查中的临床应用

蒋丽红, 吴本清, 赵正言

中国当代儿科杂志 ›› 2025, Vol. 27 ›› Issue (4) : 432-437.

PDF(518 KB)
HTML
PDF(518 KB)
HTML
中国当代儿科杂志 ›› 2025, Vol. 27 ›› Issue (4) : 432-437. DOI: 10.7499/j.issn.1008-8830.2409107
论著·临床研究

二代测序在新生儿疾病早期筛查中的临床应用

  • 蒋丽红1, 吴本清1, 赵正言2
作者信息 +

Clinical application of next-generation sequencing in early screening of neonatal diseases

  • JIANG Li-Hong, WU Ben-Qing, ZHAO Zheng-Yan
Author information +
文章历史 +

摘要

目的 评估二代测序在新生儿疾病筛查中的临床应用价值,尤其是与串联质谱法联合应用的优势。 方法 前瞻性收集2021年5—8月于深圳市光明区人民医院出生的1 999例新生儿的血样,所有样本均应用串联质谱和荧光免疫分析法初筛,采用二代测序检测135个高频致病基因变异位点,并对可疑阳性位点应用Sanger测序或多重连接探针扩增技术进行家系验证。 结果 1 999例新生儿的串联质谱分析未发现确诊阳性患儿。基因筛查发现58例阳性(2.90%),732例为致病基因携带(36.62%),1 209例阴性(60.48%);确诊新生儿肝内胆汁淤积症1例(0.05%,1/1 999)。荧光免疫分析发现葡萄糖-6-磷酸脱氢酶(glucose-6-phosphate dehydrogenase, G6PD)缺乏症39例(1.95%,39/1 999),基因筛查发现G6PD缺乏症43例(2.15%,43/1 999)。荧光免疫分析筛查发现高促甲状腺激素血症患儿6例(0.30%,6/1 999),基因筛查结果均携带DUOX2基因变异。致病基因携带率前10位的基因为G6PD(12.8%)、DUOX2(8.7%)、HBB(8.2%)、ATP7B(6.6%)、GJB2(5.7%)SLC26A4(5.6%)、PAH(5.6%)ACADSB(4.6%)、SLC25A13(4.2%)、SLC22A5(4.1%)。 结论 二代测序可作为串联质谱法的有效补充,可显著提高新生儿遗传代谢病的检出率,结合家系验证能实现精准诊断,尤其对G6PD缺乏症等单基因疾病的筛查具有互补优势。

Abstract

Objective To evaluate the clinical value of next-generation sequencing (NGS) in neonatal disease screening, particularly its advantages when combined with tandem mass spectrometry (MS/MS). Methods A prospective study was conducted involving blood samples from 1 999 neonates born at the Shenzhen Guangming District People's Hospital, between May and August 2021. All samples were initially screened using MS/MS and fluorescence immunoassay, followed by NGS to detect high-frequency variation sites in 135 related pathogenic genes. Suspected positive variants were validated using Sanger sequencing or multiplex ligation-dependent probe amplification in family studies. Results No confirmed positive cases were found in the MS/MS analysis of the 1 999 neonates. Genetic screening identified 58 positive cases (2.90%), 732 carriers of pathogenic genes (36.62%), and 1 209 negative cases (60.48%). One case of neonatal intrahepatic cholestasis was diagnosed (0.05%, 1/1 999). Fluorescence immunoassay identified 39 cases of glucose-6-phosphate dehydrogenase (G6PD) deficiency (1.95%, 39/1 999), while genetic screening identified 43 cases of G6PD deficiency (2.15%, 43/1 999). The fluorescence immunoassay also detected 6 cases of hyperthyrotropinemia (0.30%, 6/1 999), all of whom carried DUOX2 gene variants. The top ten pathogenic gene carrier rates were G6PD (12.8%), DUOX2 (8.7%), HBB (8.2%), ATP7B (6.6%), GJB2 (5.7%), SLC26A4 (5.6%), PAH (5.6%), ACADSB (4.6%), SLC25A13 (4.2%), and SLC22A5 (4.1%). Conclusions NGS can serve as an effective complement to MS/MS, significantly improving the detection rate of inherited metabolic disorders in neonates. When combined with family validation, it enables precise diagnosis, particularly demonstrating complementary advantages in screening for monogenic diseases such as G6PD deficiency.

关键词

基因筛查 / 串联质谱 / 新生儿筛查 / 遗传代谢病 / 新生儿

Key words

Genetic screening / Tandem mass spectrometry / Neonatal screening / Inherited metabolic disorder / Neonate

引用本文

导出引用
蒋丽红, 吴本清, 赵正言. 二代测序在新生儿疾病早期筛查中的临床应用[J]. 中国当代儿科杂志. 2025, 27(4): 432-437 https://doi.org/10.7499/j.issn.1008-8830.2409107
JIANG Li-Hong, WU Ben-Qing, ZHAO Zheng-Yan. Clinical application of next-generation sequencing in early screening of neonatal diseases[J]. Chinese Journal of Contemporary Pediatrics. 2025, 27(4): 432-437 https://doi.org/10.7499/j.issn.1008-8830.2409107

参考文献

1 卫生部. 关于印发《新生儿疾病筛查技术规范(2010年版)》的通知: 卫妇社发〔2010〕96号[EB/OL]. (2010-12-01)[2024-02-06]. http://www.nhc.gov.cn/wjw/gfxwj/201304/e6215cd2b1c541c6914aefeb542e3467.shtml.
2 赵正言. 国际新生儿疾病筛查进展[J]. 中国儿童保健杂志, 2012, 20(3): 193-195.
3 Gu X, Wang Z, Ye J, et al. Newborn screening in China: phenylketonuria, congenital hypothyroidism and expanded screening[J]. Ann Acad Med Singap, 2008, 37(12 Suppl): 104-107. PMID: 19904469.
4 Kemper AR, Green NS, Calonge N, et al. Decision-making process for conditions nominated to the recommended uniform screening panel: statement of the US Department of Health and Human Services Secretary's Advisory Committee on Heritable Disorders in Newborns and Children[J]. Genet Med, 2014, 16(2): 183-187. PMID: 23907646. DOI: 10.1038/gim.2013.98.
5 HRSA. Recommended uniform screening panel[EB/OL]. (2018-02)[2024-02-26]. https://www.hrsa.gov/advisory-committees/heritable-disorders/rusp.
6 Rajabi F. Updates in newborn screening[J]. Pediatr Ann, 2018, 47(5): e187-e190. PMID: 29750285. DOI: 10.3928/19382359-20180426-01.
7 Fabie NAV, Pappas KB, Feldman GL. The current state of newborn screening in the United States[J]. Pediatr Clin North Am, 2019, 66(2): 369-386. PMID: 30819343. DOI: 10.1016/j.pcl.2018.12.007.
8 中华预防医学会出生缺陷与控制专业委员会新生儿遗传代谢病筛查学组, 中华医学会儿科学分会新生儿学组. 中国新生儿基因筛查专家共识: 高通量测序在单基因病筛查中的应用[J]. 中华实用儿科临床杂志, 2023, 38(1): 31-36. DOI:10.3760/cma.j.cn101070-20221103-01252.
9 Riggs ER, Andersen EF, Cherry AM, et al. Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen)[J]. Genet Med, 2020, 22(2): 245-257. PMID: 31690835. PMCID: PMC7313390. DOI: 10.1038/s41436-019-0686-8.
10 《临床分子病理实验室二代基因测序检测专家共识》编写组. 临床分子病理实验室二代基因测序检测专家共识[J]. 中华病理学杂志, 2017, 46(3): 145-148. PMID: 28297752. DOI: 10.3760/cma.j.issn.0529-5807.2017.03.001.
11 张伟然, 赵正言. 新生儿疾病基因筛查研究进展[J]. 中华儿科杂志, 2020, 58(12): 1033-1037. PMID: 33256331. DOI: 10.3760/cma.j.cn112140-20200614-00620.
12 Holm IA, Agrawal PB, Ceyhan-Birsoy O, et al. The BabySeq project: implementing genomic sequencing in newborns[J]. BMC Pediatr, 2018, 18(1): 225. PMID: 29986673. PMCID: PMC6038274. DOI: 10.1186/s12887-018-1200-1.
13 Milko LV, Funke BH, Hershberger RE, et al. Development of Clinical Domain Working Groups for the Clinical Genome Resource (ClinGen): lessons learned and plans for the future[J]. Genet Med, 2019, 21(4): 987-993. PMID: 30181607. PMCID: PMC6401338. DOI: 10.1038/s41436-018-0267-2.
14 Tong F, Wang J, Xiao R, et al. Application of next generation sequencing in the screening of monogenic diseases in China, 2021: a consensus among Chinese newborn screening experts[J]. World J Pediatr, 2022, 18(4): 235-242. PMID: 35292922. DOI: 10.1007/s12519-022-00522-8.
15 Hume S, Nelson TN, Speevak M, et al. CCMG practice guideline: laboratory guidelines for next-generation sequencing[J]. J Med Genet, 2019, 56(12): 792-800. PMID: 31300550. PMCID: PMC6929709. DOI: 10.1136/jmedgenet-2019-106152.
16 Rehder C, Bean LJH, Bick D, et al. Next-generation sequencing for constitutional variants in the clinical laboratory, 2021 revision: a technical standard of the American College of Medical Genetics and Genomics (ACMG)[J]. Genet Med, 2021, 23(8): 1399-1415. PMID: 33927380. DOI: 10.1038/s41436-021-01139-4.
17 Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology[J]. Genet Med, 2015, 17(5): 405-424. PMID: 25741868. PMCID: PMC4544753. DOI: 10.1038/gim.2015.30.
18 McCabe LL, Therrell BL, McCabe ER. Newborn screening: rationale for a comprehensive, fully integrated public health system[J]. Mol Genet Metab, 2002, 77(4): 267-273. PMID: 12468271. DOI: 10.1016/s1096-7192(02)00196-8.
19 顾学范. 临床遗传代谢病[M]. 北京: 人民卫生出版社, 2015: 6.
20 Matern WM, Harris HT, Danchik C, et al. Functional whole genome screen of nutrient-starved Mycobacterium tuberculosis identifies genes involved in rifampin tolerance[J]. Microorganisms, 2023, 11(9): 2269. PMID: 37764112. PMCID: PMC10534295. DOI: 10.3390/microorganisms11092269.
21 Delado?y J, Ruel J, Giguère Y, et al. Is the incidence of congenital hypothyroidism really increasing? A 20-year retrospective population-based study in Québec[J]. J Clin Endocrinol Metab, 2011, 96(8): 2422-2429. PMID: 21632812. DOI: 10.1210/jc.2011-1073.
22 中华医学会儿科学分会内分泌遗传代谢学组, 中华预防医学会儿童保健分会新生儿疾病筛查学组. 先天性甲状腺功能减低症诊疗共识[J]. 中华儿科杂志, 2011, 49(6): 421-424. PMID: 21924053. DOI: 10.3760/cma.j.issn.0578-1310.2011.06.006.
23 Matern D, Tortorelli S, Oglesbee D, et al. Reduction of the false-positive rate in newborn screening by implementation of MS/MS-based second-tier tests: the Mayo Clinic experience (2004-2007)[J]. J Inherit Metab Dis, 2007, 30(4): 585-592. PMID: 17643193. DOI: 10.1007/s10545-007-0691-y.
24 Vernon HJ. Inborn errors of metabolism: advances in diagnosis and therapy[J]. JAMA Pediatr, 2015, 169(8): 778-782. PMID: 26075348. DOI: 10.1001/jamapediatrics.2015.0754.
25 Adhikari AN, Gallagher RC, Wang Y, et al. The role of exome sequencing in newborn screening for inborn errors of metabolism[J]. Nat Med, 2020, 26(9): 1392-1397. PMID: 32778825. PMCID: PMC8800147. DOI: 10.1038/s41591-020-0966-5.

PDF(518 KB)
HTML

Accesses

Citation

Detail

段落导航
相关文章

/