不同体重增长速率计算方法对早产儿远期神经系统和体格发育预后的预测价值比较

冀沛鸿, 孙玄, 高金枝, 陈玲

中国当代儿科杂志 ›› 2025, Vol. 27 ›› Issue (2) : 165-170.

PDF(526 KB)
HTML
PDF(526 KB)
HTML
中国当代儿科杂志 ›› 2025, Vol. 27 ›› Issue (2) : 165-170. DOI: 10.7499/j.issn.1008-8830.2409129
论著·临床研究

不同体重增长速率计算方法对早产儿远期神经系统和体格发育预后的预测价值比较

  • 冀沛鸿, 孙玄, 高金枝, 陈玲
作者信息 +

Value of different calculation methods for weight growth velocity in predicting long-term neurological and physical development outcomes in preterm infants

  • JI Pei-Hong, SUN Xuan, GAO Jin-Zhi, CHEN Ling
Author information +
文章历史 +

摘要

目的 比较Patel指数模型和Z评分变化法计算胎龄<30周早产儿体重增长速率对其远期神经系统和体格发育预后的预测价值。 方法 回顾性纳入2017年1月—2022年6月在华中科技大学附属同济医学院附属同济医院新生儿科住院治疗并在门诊随访至18月龄以上的胎龄<30周早产儿为研究对象,分别采用Patel指数模型和Z评分变化法计算方法将早产儿分为高速率组和低速率组,并比较Patel指数模型和Z评分变化法对早产儿远期神经系统及体格发育结局的预测价值。 结果 末次平均随访年龄为(23.0±3.6)个月。神经系统发育方面,基于Patel指数模型的低速率组的精细运动能区异常率高于高速率组(P<0.05);基于Z评分变化法的低速率组的粗大运动能区和精细运动能区异常率高于高速率组,粗大运动能区、精细运动能区及应物能区的发育商低于高速率组(P<0.05)。体格发育方面,两种方法的低速率组和高速率组身长、体重、头围及生长受限发生率比较差异均无统计学意义(P>0.05)。 结论 基于Z评分变化法计算的体重增长速率预测早产儿远期神经系统结局的能力更好,两种方法计算的体重增长速率与远期体格发育结局无明显关系。

Abstract

Objective To investigate the value of weight growth velocity, calculated using the Patel exponential model and the Z-score change method, in predicting the neurological and physical development outcomes of preterm infants with a gestational age of <30 weeks in the long term. Methods A retrospective study was conducted involving preterm infants with a gestational age of <30 weeks who were hospitalized and treated in the Department of Neonatology at Tongji Hospital, Huazhong University of Science and Technology, from January 2017 to June 2022, and were followed up at the outpatient service more than 18 months of age. The preterm infants were divided into high and low rate groups based on the two calculation methods, and the two methods were compared regarding their predictive value for neurological and physical development outcomes in the long term. Results The average age of the last follow-up was (23.0±3.6) months. For neurological development, according to the Patel exponential model, the low rate group exhibited a significantly higher abnormal rate in the fine motor domain compared to the high rate group (P<0.05). Using the Z-score change method, the low rate group had significantly higher abnormal rates in both gross motor and fine motor domains, and significantly lower developmental quotients for gross motor, fine motor, and adaptive behavior domains compared to the high rate group (P<0.05). For physical development, there were no significant differences in body length, body weight, head circumference, or the incidence rate of growth restriction between the low rate and high rate groups identified by either method (P>0.05). Conclusions Weight growth velocity calculated using the Z-score change method is more effective in predicting long-term neurological outcomes in preterm infants, while weight growth velocity derived from both methods shows no significant association with long-term physical development outcomes.

关键词

体重增长速率 / 神经系统发育 / 体格发育 / 早产儿

Key words

Weight growth velocity / Neurodevelopment / Physical development / Preterm infant

引用本文

导出引用
冀沛鸿, 孙玄, 高金枝, 陈玲. 不同体重增长速率计算方法对早产儿远期神经系统和体格发育预后的预测价值比较[J]. 中国当代儿科杂志. 2025, 27(2): 165-170 https://doi.org/10.7499/j.issn.1008-8830.2409129
JI Pei-Hong, SUN Xuan, GAO Jin-Zhi, CHEN Ling. Value of different calculation methods for weight growth velocity in predicting long-term neurological and physical development outcomes in preterm infants[J]. Chinese Journal of Contemporary Pediatrics. 2025, 27(2): 165-170 https://doi.org/10.7499/j.issn.1008-8830.2409129

参考文献

1 Cao Y, Jiang S, Sun J, et al. Assessment of neonatal intensive care unit practices, morbidity, and mortality among very preterm infants in China[J]. JAMA Netw Open, 2021, 4(8): e2118904. PMID: 34338792. PMCID: PMC8329742. DOI: 10.1001/jamanetworkopen.2021.18904.
2 Patel RM. Short- and long-term outcomes for extremely preterm infants[J]. Am J Perinatol, 2016, 33(3): 318-328. PMID: 26799967. PMCID: PMC4760862. DOI: 10.1055/s-0035-1571202.
3 Lygerou I, Ilia S, Briassoulis P, et al. The impact of estimated energy and protein balances on extrauterine growth in preterm infants[J]. Nutrients, 2023, 15(16): 3556. PMID: 37630744. PMCID: PMC10458304. DOI: 10.3390/nu15163556.
4 Ehrenkranz RA, Dusick AM, Vohr BR, et al. Growth in the neonatal intensive care unit influences neurodevelopmental and growth outcomes of extremely low birth weight infants[J]. Pediatrics, 2006, 117(4): 1253-1261. PMID: 16585322. DOI: 10.1542/peds.2005-1368.
5 Sériès T, Guillot M, Angoa G, et al. Does growth velocity affect associations between birth weight and neurodevelopment for infants born very preterm?[J]. J Pediatr, 2023, 260: 113531. PMID: 37268036. DOI: 10.1016/j.jpeds.2023.113531.
6 Simon L, Hanf M, Frondas-Chauty A, et al. Neonatal growth velocity of preterm infants: the weight Z-score change versus Patel exponential model[J]. PLoS One, 2019, 14(6): e0218746. PMID: 31251763. PMCID: PMC6599123. DOI: 10.1371/journal.pone.0218746.
7 Fenton TR, Chan HT, Madhu A, et al. Preterm infant growth velocity calculations: a systematic review[J]. Pediatrics, 2017, 139(3): e20162045. PMID: 28246339. DOI: 10.1542/peds.2016-2045.
8 Patel AL, Engstrom JL, Meier PP, et al. Accuracy of methods for calculating postnatal growth velocity for extremely low birth weight infants[J]. Pediatrics, 2005, 116(6): 1466-1473. PMID: 16322172. DOI: 10.1542/peds.2004-1699.
9 Zozaya C, Díaz C, Saenz de Pipaón M. How should we define postnatal growth restriction in preterm infants?[J]. Neonatology, 2018, 114(2): 177-180. PMID: 29920494. DOI: 10.1159/000489388.
10 El Rafei R, Maier RF, Jarreau PH, et al. Postnatal growth restriction and neurodevelopment at 5 years of age: a European extremely preterm birth cohort study[J]. Arch Dis Child Fetal Neonatal Ed, 2023, 108(5): 492-498. PMID: 36868809. DOI: 10.1136/archdischild-2022-324988.
11 Maruyama H, Yonemoto N, Kono Y, et al. Weight growth velocity and neurodevelopmental outcomes in extremely low birth weight infants[J]. PLoS One, 2015, 10(9): e0139014. PMID: 26402326. PMCID: PMC4581837. DOI: 10.1371/journal.pone.0139014.
12 Shan L, Feng JY, Wang TT, et al. Prevalence and developmental profiles of autism spectrum disorders in children with global developmental delay[J]. Front Psychiatry, 2021, 12: 794238. PMID: 35115968. PMCID: PMC8803654. DOI: 10.3389/fpsyt.2021.794238.
13 《中华儿科杂志》编辑委员会, 中华医学会儿科学分会儿童保健学组, 中华医学会儿科学分会新生儿学组. 早产、低出生体重儿出院后喂养建议[J]. 中华儿科杂志, 2016, 54(1): 6-12. PMID: 27470474. DOI: 10.3760/cma.j.issn.0578-1310.2016.01.003.
14 Chou JH, Roumiantsev S, Singh R. PediTools electronic growth chart calculators: applications in clinical care, research, and quality improvement[J]. J Med Internet Res, 2020, 22(1): e16204. PMID: 32012066. PMCID: PMC7058170. DOI: 10.2196/16204.
15 WHO Multicentre Growth Reference Study Group. WHO child growth standards based on length/height, weight and age[J]. Acta Paediatr Suppl, 2006, 450: 76-85. PMID: 16817681. DOI: 10.1111/j.1651-2227.2006.tb02378.x.
16 Figueras-Aloy J, Palet-Trujols C, Matas-Barceló I, et al. Extrauterine growth restriction in very preterm infant: etiology, diagnosis, and 2-year follow-up[J]. Eur J Pediatr, 2020, 179(9): 1469-1479. PMID: 32193657. DOI: 10.1007/s00431-020-03628-1.
17 Gao W, Lin W, Grewen K, et al. Functional connectivity of the infant human brain: plastic and modifiable[J]. Neuroscientist, 2017, 23(2): 169-184. PMID: 26929236. PMCID: PMC5145769. DOI: 10.1177/1073858416635986.
18 Papageorghiou AT, Ohuma EO, Altman DG, et al. International standards for fetal growth based on serial ultrasound measurements: the fetal growth longitudinal study of the INTERGROWTH-21st project[J]. Lancet, 2014, 384(9946): 869-879. PMID: 25209488. DOI: 10.1016/S0140-6736(14)61490-2.
19 Wang N, Zhang J, Yu Z, et al. Evaluation of nutrition status of very preterm infants in neonatal intensive care units using different growth indicators[J]. Nutr Clin Pract, 2021, 36(6): 1312-1319. PMID: 34339517. DOI: 10.1002/ncp.10741.
20 Bobba PS, Weber CF, Higaki ARA, et al. Impact of postnatal weight gain on brain white matter maturation in very preterm infants[J]. J Neuroimaging, 2023, 33(6): 991-1002. PMID: 37483073. PMCID: PMC10800683. DOI: 10.1111/jon.13145.
21 Kim SY, Kim EK, Song H, et al. Association of brain microstructure and functional connectivity with cognitive outcomes and postnatal growth among early school-aged children born with extremely low birth weight[J]. JAMA Netw Open, 2023, 6(3): e230198. PMID: 36862414. PMCID: PMC9982697. DOI: 10.1001/jamanetworkopen.2023.0198.
22 Lan S, Fu H, Zhang R, et al. Extrauterine growth restriction in preterm infants: postnatal growth pattern and physical development outcomes at age 3-6 years[J]. Front Pediatr, 2022, 10: 945422. PMID: 35967552. PMCID: PMC9372328. DOI: 10.3389/fped.2022.945422.
23 Ashton JJ, Johnson MJ, Pond J, et al. Assessing the growth of preterm infants using detailed anthropometry[J]. Acta Paediatr, 2017, 106(6): 889-896. PMID: 28240375. DOI: 10.1111/apa.13804.

PDF(526 KB)
HTML

Accesses

Citation

Detail

段落导航
相关文章

/