目的 研究早产儿有血流动力学意义的动脉导管未闭(hemodynamically significant patent ductus arteriosus, hsPDA)结扎术后出现心肺功能障碍的高危因素。 方法 回顾性收集华中科技大学同济医学院附属湖北省妇女儿童医院2018年1月—2024年8月收治的胎龄<34周,经过1~2个疗程布洛芬治疗失败,行hsPDA结扎手术的早产儿的临床资料,根据术后是否出现血压改变及氧合或通气衰竭分为心肺功能障碍组(19例)及无心肺功能障碍组(40例)。采用二元logistic回归分析探讨术后出现心肺功能障碍的高危因素。 结果 二元logistic回归分析显示,术前平均体重增长速度快和术前1周内游离三碘甲状腺原氨酸(free triiodothyronine, FT3)水平低是早产儿hsPDA结扎术后出现心肺功能障碍的高危因素(P<0.05)。受试者操作特征曲线分析显示,术前平均体重增长速度>11.45 g/(kg·d)和术前1周内FT3<2.785 pmol/L对术后出现心肺功能障碍有预测价值(P<0.05),两者联合预测价值最高(P<0.05),曲线下面积为0.825,灵敏度为79%,特异度为75%。 结论 术前平均体重增长速度超过11.45 g/(kg·d)及术前1周内FT3水平低于2.785 pmol/L是hsPDA术后心肺功能受影响的高危因素,术前应加强评估与干预,以降低术后并发症风险。
Abstract
Objective To investigate the risk factors for the occurrence of cardiopulmonary dysfunction following ligation of hemodynamically significant patent ductus arteriosus (hsPDA) in preterm infants. Methods A retrospective collection of clinical data was conducted on preterm infants with a gestational age of <34 weeks who were admitted to the Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology from January 2018 to August 2024. These infants underwent hsPDA ligation after 1-2 courses of failed ibuprofen treatment. Based on the occurrence of blood pressure changes and oxygenation or ventilation failure postoperatively, the infants were divided into a cardiopulmonary dysfunction group (19 cases) and a non-cardiopulmonary dysfunction group (40 cases). Binary logistic regression analysis was performed to explore risk factors for postoperative cardiopulmonary dysfunction. Results Binary logistic regression analysis indicated that a faster average weight gain rate preoperatively and low levels of free triiodothyronine (FT3) within one week before surgery were risk factors for cardiopulmonary dysfunction following hsPDA ligation (P<0.05). Receiver operating characteristic curve analysis showed that an average weight gain rate >11.45 g/(kg·d) and FT3 levels <2.785 pmol/L within one week before surgery had predictive value for postoperative cardiopulmonary dysfunction (P<0.05). The combination of these two indicators provided the highest predictive value (P<0.05), with an area under the curve of 0.825, a sensitivity of 79%, and a specificity of 75%. Conclusions An average weight gain rate exceeding 11.45 g/(kg·d) and FT3 levels below 2.785 pmol/L within one week before surgery are risk factors affecting cardiopulmonary function after hsPDA ligation. Preoperative assessment and intervention should be strengthened to reduce the risk of postoperative complications.
关键词
动脉导管未闭 /
手术结扎 /
高危因素 /
心肺功能障碍 /
早产儿
Key words
Patent ductus arteriosus /
Surgical ligation /
Risk factor /
Cardiopulmonary dysfunction /
Preterm infant
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
1 Relangi D, Somashekar S, Jain D, et al. Changes in patent ductus arteriosus treatment strategy and respiratory outcomes in premature infants[J]. J Pediatr, 2021, 235: 58-62. PMID: 33894266. DOI: 10.1016/j.jpeds.2021.04.030.
2 Mitra S, de Boode WP, Weisz DE, et al. Interventions for patent ductus arteriosus (PDA) in preterm infants: an overview of Cochrane systematic reviews[J]. Cochrane Database Syst Rev, 2023, 4(4): CD013588. PMID: 37039501. PMCID: PMC10091483. DOI: 10.1002/14651858.CD013588.pub2.
3 Gleason CA, Juul SE. Avery's Diseases of the Newborn[M]. 10th ed. Philadelphia: Elsevier, 2018: 790-800.
4 Isayama T, Kusuda S, Reichman B, et al. Neonatal intensive care unit-level patent ductus arteriosus treatment rates and outcomes in infants born extremely preterm[J]. J Pediatr (Rio J), 2020, 220: 34-39.e5. PMID: 32145968. DOI: 10.1016/j.jpeds.2020.01.069.
5 邵长荣, 宋阳. 早产儿动脉导管未闭手术结扎的研究进展[J]. 中华小儿外科杂志, 2022, 43(10): 937-942. DOI: 10.3760/cma.j.cn421158-20211202-00587.
6 Giesinger RE, Bischoff AR, McNamara PJ. Anticipatory perioperative management for patent ductus arteriosus surgery: understanding postligation cardiac syndrome[J]. Congenit Heart Dis, 2019, 14(2): 311-316. PMID: 30945807. DOI: 10.1111/chd.12738.
7 Bischoff AR, Backes CH, Rivera B, et al. Cardiorespiratory instability after percutaneous patent ductus arteriosus closure: a multicenter cohort study[J]. J Pediatr, 2024, 271: 114052. PMID: 38615941. DOI: 10.1016/j.jpeds.2024.114052.
8 Serrano RM, Madison M, Lorant D, et al. Comparison of 'post-patent ductus arteriosus ligation syndrome' in premature infants after surgical ligation vs. percutaneous closure[J]. J Perinatol, 2020, 40(2): 324-329. PMID: 31578421. DOI: 10.1038/s41372-019-0513-8.
9 宋艺凡, 李娟. 超低出生体重儿动脉导管未闭的治疗进展[J]. 国际儿科学杂志, 2021, 48(12): 828-832. DOI: 10.3760/cma.j.issn.1673-4408.2021.12.008.
10 McNamara PJ, Weisz DE, Giesinger RE, et al. Avery's Neonatology: Pathophysiology and Management of the Newborn[M]. Philadelphia: Wolters Kluwer, 2016: 457-486.
11 Dionne JM, Flynn JT. Management of severe hypertension in the newborn[J]. Arch Dis Child, 2017, 102(12): 1176-1179. PMID: 28739634. DOI: 10.1136/archdischild-2015-309740.
12 Ting JY, Resende M, More K, et al. Predictors of respiratory instability in neonates undergoing patient ductus arteriosus ligation after the introduction of targeted milrinone treatment[J]. J Thorac Cardiovasc Surg, 2016, 152(2): 498-504. PMID: 27174516. DOI: 10.1016/j.jtcvs.2016.03.085.
13 Jain A, Sahni M, El-Khuffash A, et al. Use of targeted neonatal echocardiography to prevent postoperative cardiorespiratory instability after patent ductus arteriosus ligation[J]. J Pediatr, 2012, 160(4): 584-589.e1. PMID: 22050874. DOI: 10.1016/j.jpeds.2011.09.027.
14 Bischoff AR, Giesinger RE, Bell EF, et al. Precision medicine in neonatal hemodynamics: need for prioritization of mechanism of illness and defining population of interest[J]. J Perinatol, 2020, 40(9): 1446-1449. PMID: 32719495. DOI: 10.1038/s41372-020-0741-y.
15 Bischoff AR, Stanford AH, Aldoss O, et al. Left ventricular function before and after percutaneous patent ductus arteriosus closure in preterm infants[J]. Pediatr Res, 2023, 94(1): 213-221. PMID: 36380071. DOI: 10.1038/s41390-022-02372-6.
16 Borlaug BA, Kass DA. Ventricular-vascular interaction in heart failure[J]. Heart Fail Clin, 2008, 4(1): 23-36. PMID: 18313622. PMCID: PMC2586173. DOI: 10.1016/j.hfc.2007.10.001.
17 Mourouzis I, Lavecchia AM, Xinaris C. Thyroid hormone signalling: from the dawn of life to the bedside[J]. J Mol Evol, 2020, 88(1): 88-103. PMID: 31451837. DOI: 10.1007/s00239-019-09908-1.
18 Taylor PN, Eligar V, Muller I, et al. Combination thyroid hormone replacement; knowns and unknowns[J]. Front Endocrinol (Lausanne), 2019, 10: 706. PMID: 31695677. PMCID: PMC6817486. DOI: 10.3389/fendo.2019.00706.
19 von Hafe M, Neves JS, Vale C, et al. The impact of thyroid hormone dysfunction on ischemic heart disease[J]. Endocr Connect, 2019, 8(5): R76-R90. PMID: 30959486. PMCID: PMC6499922. DOI: 10.1530/EC-19-0096.
20 An S, Gilani N, Huang Y, et al. Adverse transverse-tubule remodeling in a rat model of heart failure is attenuated with low-dose triiodothyronine treatment[J]. Mol Med, 2019, 25(1): 53. PMID: 31810440. PMCID: PMC6898920. DOI: 10.1186/s10020-019-0120-3.
21 Marwali EM, Caesa P, Darmaputri S, et al. Oral triiodothyronine supplementation decreases low cardiac output syndrome after pediatric cardiac surgery[J]. Pediatr Cardiol, 2019, 40(6): 1238-1246. PMID: 31309235. DOI: 10.1007/s00246-019-02143-x.
22 Bischoff AR, Stanford AH, McNamara PJ. Short-term ventriculo-arterial coupling and myocardial work efficiency in preterm infants undergoing percutaneous patent ductus arteriosus closure[J]. Physiol Rep, 2021, 9(22): e15108. PMID: 34806325. PMCID: PMC8606853. DOI: 10.14814/phy2.15108.
23 Mitra S, Weisz D, Jain A, et al. Management of the patent ductus arteriosus in preterm infants[J]. Paediatr Child Health, 2022, 27(1): 63-64. PMID: 35273674. PMCID: PMC8900701. DOI: 10.1093/pch/pxab085.