铜过载介导内质网应激在川崎病血管内皮损伤中的作用及机制研究

温世芳, 汤志远, 申娴娟, 陈涛, 赵建美

中国当代儿科杂志 ›› 2025, Vol. 27 ›› Issue (7) : 842-849.

PDF(1993 KB)
HTML
PDF(1993 KB)
HTML
中国当代儿科杂志 ›› 2025, Vol. 27 ›› Issue (7) : 842-849. DOI: 10.7499/j.issn.1008-8830.2412085
论著·实验研究

铜过载介导内质网应激在川崎病血管内皮损伤中的作用及机制研究

作者信息 +

Role and mechanism of copper overload-mediated endoplasmic reticulum stress in vascular endothelial injury in Kawasaki disease

Author information +
文章历史 +

摘要

目的 探讨铜过载介导的内质网应激(endoplasmic reticulum stress, ERS)在川崎病(Kawasaki disease, KD)血管内皮损伤中的作用及机制。 方法 将4周龄雄性C57BL/6小鼠随机分为对照组、KD组、KD+铜螯合剂四硫代钼酸盐(tetrathiomolybdate, TTM)组及KD+内质网应激抑制剂AMG PERK 44(AMG)组(每组n=20),使用白色念珠菌提取物构建KD小鼠模型;将人脐静脉内皮细胞(human umbilical vein endothelial cell, HUVEC)分为对照组(健康儿童血清干预)、KD组(KD患儿血清干预)、KD+TTM组(KD患儿血清联合20 μmol/L TTM干预)。采用红氨酸铜染色检测小鼠心脏组织铜沉积情况,通过测量小鼠腹主动脉直径和面积、苏木精-伊红染色观察小鼠血管病理改变,透射电镜、免疫荧光检测ERS激活情况;采用CCK8、流式细胞术、细胞划痕和细胞成管实验评估HUVEC细胞活力、凋亡和功能改变,Western blot法检测ERS标志蛋白表达水平。 结果 与KD组比较,KD+TTM组和KD+AMG组血管壁铜盐沉积减少,冠状动脉内皮细胞和内质网肿胀、炎性细胞浸润、腹主动脉病变扩张减轻;腹主动脉直径和面积、ERS标志蛋白(GRP78、CHOP)荧光强度降低(P<0.05)。与KD组比较,KD+TTM组细胞活力、小管数目、划痕愈合率升高,细胞凋亡率、ERS标志蛋白(GRP78、CHOP、ATF6和p-PERK)表达降低(P<0.05)。 结论 铜过载通过激活ERS通路加重KD血管内皮损伤,TTM可通过调控铜代谢及抑制ERS通路发挥内皮保护作用。

Abstract

Objective To investigate the role and mechanism of copper overload-mediated endoplasmic reticulum stress (ERS) in vascular endothelial injury in Kawasaki disease (KD). Methods Four-week-old male C57BL/6 mice were randomly divided into four groups: control, KD, KD plus copper chelator tetrathiomolybdate (TTM), and KD plus ERS inhibitor AMG PERK 44 (AMG) (n=20 per group). A KD mouse model was established using Candida albicans extract. Human umbilical vein endothelial cells (HUVECs) were divided into control (intervention with healthy children's serum), KD (intervention with KD patients' serum), and KD+TTM (intervention with KD patients' serum plus 20 µmol/L TTM). Copper deposition in mouse heart tissue was assessed using rubeanic acid staining. Vascular pathological changes were observed using hematoxylin-eosin staining and measurement of abdominal aortic diameter and area. ERS activation was detected by transmission electron microscopy and immunofluorescence. HUVEC viability, apoptosis, and functional changes were evaluated using CCK8, flow cytometry, cell scratch assay, and angiogenesis experiments. ERS marker protein expression levels were measured by Western blot. Results Compared to the KD group, the KD+TTM and KD+AMG groups showed reduced copper deposition in the vascular wall, decreased swelling of coronary endothelial cells and endoplasmic reticulum, reduced inflammatory cell infiltration, and less abdominal aortic lesion expansion. The abdominal aortic diameter and area, and the fluorescence intensity of ERS marker proteins (GRP78 and CHOP) were significantly lower (P<0.05). Compared to the KD group, the KD+TTM group exhibited increased cell viability, tube number, and scratch healing rate, along with decreased apoptosis rate and expression of ERS marker proteins (GRP78, CHOP, ATF6, and p-PERK) (P<0.05). Conclusions Copper overload aggravates vascular endothelial injury in KD by activating the ERS pathway. TTM can exert protective effects on the endothelium by regulating copper metabolism and inhibiting the ERS pathway.

关键词

川崎病 / 血管内皮损伤 / 内质网应激 / 铜螯合剂 / 人脐静脉内皮细胞 / 小鼠

Key words

Kawasaki disease / Vascular endothelial injury / Endoplasmic reticulum stress / Copper chelator / Human umbilical vein endothelial cell / Mouse

引用本文

导出引用
温世芳, 汤志远, 申娴娟, . 铜过载介导内质网应激在川崎病血管内皮损伤中的作用及机制研究[J]. 中国当代儿科杂志. 2025, 27(7): 842-849 https://doi.org/10.7499/j.issn.1008-8830.2412085
Shi-Fang WEN, Zhi-Yuan TANG, Xian-Juan SHEN, et al. Role and mechanism of copper overload-mediated endoplasmic reticulum stress in vascular endothelial injury in Kawasaki disease[J]. Chinese Journal of Contemporary Pediatrics. 2025, 27(7): 842-849 https://doi.org/10.7499/j.issn.1008-8830.2412085

参考文献

[1]
Fukazawa R, Kobayashi J, Ayusawa M, et al. JCS/JSCS 2020 guideline on diagnosis and management of cardiovascular sequelae in Kawasaki disease[J]. Circ J, 2020, 84(8): 1348-1407. DOI: 10.1253/circj.CJ-19-1094 .
[2]
Burns JC. The etiologies of Kawasaki disease[J]. J Clin Invest, 2024, 134(5): e176938. PMCID: PMC10904046. DOI: 10.1172/JCI176938 .
[3]
Kobayashi T, Ayusawa M, Suzuki H, et al. Revision of diagnostic guidelines for Kawasaki disease (6th revised edition)[J]. Pediatr Int, 2020, 62(10): 1135-1138. DOI: 10.1111/ped.14326 .
[4]
McCrindle BW, Rowley AH, Newburger JW, et al. Diagnosis, treatment, and long-term management of Kawasaki disease: a scientific statement for health professionals from the American Heart Association[J]. Circulation, 2017, 135(17): e927-e999. DOI: 10.1161/CIR.0000000000000484 .
[5]
Battson ML, Lee DM, Gentile CL. Endoplasmic reticulum stress and the development of endothelial dysfunction[J]. Am J Physiol Heart Circ Physiol, 2017, 312(3): H355-H367. DOI: 10.1152/ajpheart.00437.2016 .
[6]
Wang Z, Yang B, Chen X, et al. Nobiletin regulates ROS/ADMA/DDAHII/eNOS/NO pathway and alleviates vascular endothelium injury by iron overload[J]. Biol Trace Elem Res, 2020, 198(1): 87-97. DOI: 10.1007/s12011-020-02038-6 .
[7]
Fan X, Yang G, Yang Z, et al. Catecholamine induces endothelial dysfunction via angiotensin Ⅱ and intermediate conductance calcium activated potassium channel[J]. Biomed Pharmacother, 2024, 177: 116928. DOI: 10.1016/j.biopha.2024.116928 .
[8]
Gouaref I, Otmane A, Makrelouf M, et al. Crucial interactions between altered plasma trace elements and fatty acids unbalance ratio to management of systemic arterial hypertension in diabetic patients: focus on endothelial dysfunction[J]. Int J Mol Sci, 2024, 25(17): 9288. PMCID: PMC11395650. DOI: 10.3390/ijms25179288 .
[9]
Maier JA. Novel insights into an old story: magnesium and vascular tone[J]. Acta Physiol (Oxf), 2024, 240(3): e14110. DOI: 10.1111/apha.14110 .
[10]
Liu Y, Miao J. An emerging role of defective copper metabolism in heart disease[J]. Nutrients, 2022, 14(3): 700. PMCID: PMC8838622. DOI: 10.3390/nu14030700 .
[11]
Isei MO, Kamunde C. Effects of copper and temperature on heart mitochondrial hydrogen peroxide production[J]. Free Radic Biol Med, 2020, 147: 114-128. DOI: 10.1016/j.freeradbiomed.2019.12.006 .
[12]
Poursani EM, Mercatelli D, Raninga P, et al. Copper chelation suppresses epithelial-mesenchymal transition by inhibition of canonical and non-canonical TGF-β signaling pathways in cancer[J]. Cell Biosci, 2023, 13(1): 132. PMCID: PMC10362738. DOI: 10.1186/s13578-023-01083-7 .
[13]
Duong TT, Silverman ED, Bissessar MV, et al. Superantigenic activity is responsible for induction of coronary arteritis in mice: an animal model of Kawasaki disease[J]. Int Immunol, 2003, 15(1): 79-89. DOI: 10.1093/intimm/dxg007 .
[14]
Takahashi K, Oharaseki T, Wakayama M, et al. Histopathological features of murine systemic vasculitis caused by Candida albicans extract: an animal model of Kawasaki disease[J]. Inflamm Res, 2004, 53(2): 72-77. DOI: 10.1007/s00011-003-1225-1 .
[15]
Wei T, Wang Q, Chen T, et al. The possible association of mitochondrial fusion and fission in copper deficiency-induced oxidative damage and mitochondrial dysfunction of the heart[J]. J Trace Elem Med Biol, 2024, 85: 127483. DOI: 10.1016/j.jtemb.2024.127483 .
[16]
Baker ZN, Jett K, Boulet A, et al. The mitochondrial metallochaperone SCO1 maintains CTR1 at the plasma membrane to preserve copper homeostasis in the murine heart[J]. Hum Mol Genet, 2017, 26(23): 4617-4628. PMCID: PMC5886179. DOI: 10.1093/hmg/ddx344 .
[17]
Liu H, Guo H, Deng H, et al. Copper induces hepatic inflammatory responses by activation of MAPKs and NF-κB signalling pathways in the mouse[J]. Ecotoxicol Environ Saf, 2020, 201: 110806. DOI: 10.1016/j.ecoenv.2020.110806 .
[18]
Wu H, Guo H, Liu H, et al. Copper sulfate-induced endoplasmic reticulum stress promotes hepatic apoptosis by activating CHOP, JNK and caspase-12 signaling pathways[J]. Ecotoxicol Environ Saf, 2020, 191: 110236. DOI: 10.1016/j.ecoenv.2020.110236 .
[19]
Guo H, Ouyang Y, Yin H, et al. Induction of autophagy via the ROS-dependent AMPK-mTOR pathway protects copper-induced spermatogenesis disorder[J]. Redox Biol, 2022, 49: 102227. PMCID: PMC8728583. DOI: 10.1016/j.redox.2021.102227 .
[20]
Delsouc MB, Conforti RA, Vitale DL, et al. Antiproliferative and antiangiogenic effects of ammonium tetrathiomolybdate in a model of endometriosis[J]. Life Sci, 2021, 287: 120099. DOI: 10.1016/j.lfs.2021.120099 .
[21]
Zhou Q, Zhang Y, Lu L, et al. Copper induces microglia-mediated neuroinflammation through ROS/NF-κB pathway and mitophagy disorder[J]. Food Chem Toxicol, 2022, 168: 113369. DOI: 10.1016/j.fct.2022.113369 .
[22]
Zhao G, Sun H, Zhang T, et al. Copper induce zebrafish retinal developmental defects via triggering stresses and apoptosis[J]. Cell Commun Signal, 2020, 18(1): 45. PMCID: PMC7071659. DOI: 10.1186/s12964-020-00548-3 .
[23]
Delsouc MB, Conforti RA, Vitale DL, et al. Antiproliferative and antiangiogenic effects of ammonium tetrathiomolybdate in a model of endometriosis[J]. Life Sci, 2021, 287: 120099. DOI: 10.1016/j.lfs.2021.120099 .

脚注

所有作者声明无利益冲突。

基金

国家自然科学基金面上项目(82270528)
江苏省卫健委医学科研重点A类项目(ZDA2020010)

编委: 杨丹

版权

版权所有 © 2023中国当代儿科杂志
PDF(1993 KB)
HTML

Accesses

Citation

Detail

段落导航
相关文章

/