10例STAT基因功能缺失/功能获得变异患儿临床特征分析及免疫治疗初步探索

李洪伟, 王艳红, 吴上志, 张碧云, 徐诗惠, 徐佳兴, 黄展航, 卢成瑜, 陈德晖

中国当代儿科杂志 ›› 2025, Vol. 27 ›› Issue (8) : 951-958.

PDF(1176 KB)
HTML
PDF(1176 KB)
HTML
中国当代儿科杂志 ›› 2025, Vol. 27 ›› Issue (8) : 951-958. DOI: 10.7499/j.issn.1008-8830.2502011
论著·临床研究

10例STAT基因功能缺失/功能获得变异患儿临床特征分析及免疫治疗初步探索

作者信息 +

Clinical features and immunotherapy for children with loss-of-function/gain-of-function mutations in the STAT gene: an analysis of 10 cases

Author information +
文章历史 +

摘要

目的 分析STAT基因变异患儿的临床特征,并探索相应的免疫治疗策略。 方法 回顾性总结2015年10月—2024年10月广州医科大学附属第一医院儿科收治的10例STAT基因变异患儿的临床资料,对部分难治性病例实施探索性免疫治疗,并评估治疗前后症状、影像学表现及细胞因子水平的变化。 结果 10例患儿的主要临床表现为出生后反复出现皮疹(7/10)、咳嗽(8/10)、喘息(5/10)、咳痰(4/10)和脓涕(4/10)。基因分型结果显示,STAT1基因功能缺失(loss-of-function, LOF)杂合变异1例,STAT3基因LOF杂合变异4例,STAT3基因功能获得(gain-of-function, GOF)杂合变异5例。2例STAT3基因LOF变异患儿接受奥马珠单抗治疗后,白介素-6水平下降,临床症状及影像学表现均有改善;3例STAT3基因GOF变异患儿接受甲泼尼龙(每天0.5 mg/kg)治疗后病情得到有效控制;2例STAT3基因GOF变异患儿接受JAK抑制剂治疗后症状亦有所缓解。 结论 对反复皮疹伴呼吸道化脓性感染的患儿,应考虑STAT基因变异筛查。常规治疗无效时,靶向免疫治疗可能改善临床预后。

Abstract

Objective To investigate the clinical features of children with STAT gene mutations, and to explore corresponding immunotherapy strategies. Methods A retrospective analysis was performed for the clinical data of 10 children with STAT gene mutations who were admitted to the Department of Pediatrics of the First Affiliated Hospital of Guangzhou Medical University, from October 2015 to October 2024. Exploratory immunotherapy was implemented in some refractory cases, and the changes in symptoms, imaging manifestations, and cytokine levels were assessed after treatment. Results For the 10 children, the main clinical manifestations were recurrent rash since birth (7/10), cough (8/10), wheezing (5/10), expectoration (4/10), and purulent nasal discharge (4/10). Genotyping results showed that there was one child with heterozygous loss-of-function (LOF) mutation in the STAT1 gene, four children with heterozygous LOF mutation in the STAT3 gene, and five children with heterozygous gain-of-function (GOF) mutation in the STAT3 gene. Two children with LOF mutation in the STAT3 gene showed decreased interleukin-6 levels and improved clinical symptoms and imaging findings after omalizumab treatment. Three children with GOF mutation in the STAT3 gene achieved effective disease control after treatment with methylprednisolone (0.5 mg/kg per day). Two children with GOF mutation in the STAT3 gene received treatment with JAK inhibitor and then showed some improvement in symptoms. Conclusions STAT gene mutation screening should be considered for children with recurrent rash and purulent respiratory tract infections. Targeted immunotherapy may improve prognosis in patients with no response to conventional treatment.

关键词

STAT基因 / 功能获得变异 / 功能缺失变异 / 免疫治疗 / 儿童

Key words

STAT gene / Gain-of-function mutation / Loss-of-function mutation / Immunotherapy / Child

引用本文

导出引用
李洪伟, 王艳红, 吴上志, . 10例STAT基因功能缺失/功能获得变异患儿临床特征分析及免疫治疗初步探索[J]. 中国当代儿科杂志. 2025, 27(8): 951-958 https://doi.org/10.7499/j.issn.1008-8830.2502011
Hong-Wei LI, Yan-Hong WANG, Shang-Zhi WU, et al. Clinical features and immunotherapy for children with loss-of-function/gain-of-function mutations in the STAT gene: an analysis of 10 cases[J]. Chinese Journal of Contemporary Pediatrics. 2025, 27(8): 951-958 https://doi.org/10.7499/j.issn.1008-8830.2502011

参考文献

[1]
Hu Q, Bian Q, Rong D, et al. JAK/STAT pathway: extracellular signals, diseases, immunity, and therapeutic regimens[J]. Front Bioeng Biotechnol, 2023, 11: 1110765. PMCID: PMC9995824. DOI: 10.3389/fbioe.2023.1110765 .
[2]
Salas A, Hernandez-Rocha C, Duijvestein M, et al. JAK-STAT pathway targeting for the treatment of inflammatory bowel disease[J]. Nat Rev Gastroenterol Hepatol, 2020, 17(6): 323-337. DOI: 10.1038/s41575-020-0273-0 .
[3]
Li YJ, Zhang C, Martincuks A, et al. STAT proteins in cancer: orchestration of metabolism[J]. Nat Rev Cancer, 2023, 23(3): 115-134. DOI: 10.1038/s41568-022-00537-3 .
[4]
Ren F, Li J, Wang Y, et al. The effects of Angelica sinensis polysaccharide on tumor growth and iron metabolism by regulating hepcidin in tumor-bearing mice[J]. Cell Physiol Biochem, 2018, 47(3): 1084-1094. DOI: 10.1159/000490185 .
[5]
Bousfiha A, Moundir A, Tangye SG, et al. The 2022 update of IUIS phenotypical classification for human inborn errors of immunity[J]. J Clin Immunol, 2022, 42(7): 1508-1520. DOI: 10.1007/s10875-022-01352-z .
[6]
陈学梅, 徐祺玲, 安云飞, 等. STAT1基因突变引起的原发性免疫缺陷病研究进展[J]. 中国实用儿科杂志, 2019, 34(7): 599-601. DOI:10.19538/j.ek2019070618 .
[7]
Costagliola G, Cappelli S, Consolini R. Autoimmunity in primary immunodeficiency disorders: an updated review on pathogenic and clinical implications[J]. J Clin Med, 2021, 10(20): 4729. PMCID: PMC8538991. DOI: 10.3390/jcm10204729 .
[8]
Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology[J]. Genet Med, 2015, 17(5): 405-424. PMCID: PMC4544753. DOI: 10.1038/gim.2015.30 .
[9]
Lyra PT, Falcão ACAM, Cruz RA, et al. Gain-of-function STAT1 mutation and visceral leishmaniasis[J]. Einstein (Sao Paulo), 2022, 20: eRC0048. PMCID: PMC9444186. DOI: 10.31744/einstein_journal/2022RC0048 .
[10]
Okada S, Asano T, Moriya K, et al. Human STAT1 gain-of-function heterozygous mutations: chronic mucocutaneous candidiasis and type I interferonopathy[J]. J Clin Immunol, 2020, 40(8): 1065-1081. PMCID: PMC8561788. DOI: 10.1007/s10875-020-00847-x .
[11]
Hashemi H, Mohebbi M, Mehravaran S, et al. Hyperimmunoglobulin E syndrome: genetics, immunopathogenesis, clinical findings, and treatment modalities[J]. J Res Med Sci, 2017, 22: 53. PMCID: PMC5426098. DOI: 10.4103/jrms.JRMS_1050_16 .
[12]
Duran JSC, Sayed S, Dalalo MC, et al. Altered purinergic signaling and CD8+ T cell dysregulation in STAT3 GOF syndrome[J]. bioRxiv[Preprint]. (2024-12-13) [2025-01-05]. PMCID: PMC11661228. DOI: 10.1101/2024.12.12.626682 .
[13]
Freeman AF, Bergerson JRE. A multifaceted disease: the stats of STAT3 GOF[J]. J Allergy Clin Immunol, 2023, 151(4): 901-903. DOI: 10.1016/j.jaci.2023.02.010 .
[14]
Mauracher AA, Eekels JJM, Woytschak J, et al. Erythropoiesis defect observed in STAT3 GOF patients with severe anemia[J]. J Allergy Clin Immunol, 2020, 145(4): 1297-1301. DOI: 10.1016/j.jaci.2019.11.042 .
[15]
Buchacher T, Shetty A, Koskela SA, et al. PIM kinases regulate early human Th17 cell differentiation[J]. Cell Rep, 2023, 42(12): 113469. PMCID: PMC10765319. DOI: 10.1016/j.celrep.2023.113469 .
[16]
Qin Z, Wang R, Hou P, et al. TCR signaling induces STAT3 phosphorylation to promote TH17 cell differentiation[J]. J Exp Med, 2024, 221(3): e20230683. PMCID: PMC10849914. DOI: 10.1084/jem.20230683 .
[17]
Kumar C, Zito PM. Omalizumab[M]//StatPearls [Internet]. Treasure Island (FL): StatPearls. 2025.
[18]
Licari A, Marseglia A, Caimmi S, et al. Omalizumab in children[J]. Paediatr Drugs, 2014, 16(6): 491-502. PMCID: PMC4250568. DOI: 10.1007/s40272-014-0107-z .
[19]
Gomes N, Miranda J, Lopes S, et al. Omalizumab in the treatment of hyper-IgE syndrome: 2 case reports[J]. J Investig Allergol Clin Immunol, 2020, 30(3): 191-192. DOI: 10.18176/jiaci.0469 .
[20]
Guo T, Wei L, Karki S, et al. Omalizumab and dupilumab for the treatment of autosomal-recessive DOCK8 hyper-IgE syndrome[J]. Indian J Dermatol Venereol Leprol, 2025, 91(1): 94-96. DOI: 10.25259/IJDVL_348_2023 .

脚注

所有作者声明无利益冲突。


编委: 王颖

版权

版权所有 © 2023中国当代儿科杂志
PDF(1176 KB)
HTML

Accesses

Citation

Detail

段落导航
相关文章

/