国家卫生健康行业标准《儿科输血指南》中心脏手术患儿输血的编制说明与解读

黄蓉, 何庆南, 黑明燕, 杨明华, 竺晓凡, 卢俊, 徐晓军, 袁天明, 张蓉, 王旭, 王静, 邵智利, 赵明一, 郭永建, 吴心音, 陈佳睿, 陈琦蓉, 郭佳, 桂嵘, 刘晋萍

中国当代儿科杂志 ›› 2025, Vol. 27 ›› Issue (7) : 778-785.

PDF(600 KB)
HTML
PDF(600 KB)
HTML
中国当代儿科杂志 ›› 2025, Vol. 27 ›› Issue (7) : 778-785. DOI: 10.7499/j.issn.1008-8830.2503114
指南解读:《儿科输血指南》系列

国家卫生健康行业标准《儿科输血指南》中心脏手术患儿输血的编制说明与解读

作者信息 +

Explanation and interpretation of blood transfusion provisions for children undergoing cardiac surgery in the national health standard "Guideline for pediatric transfusion"

Author information +
文章历史 +

摘要

为了指导儿童患者的临床输血实践,国家卫生健康委员会发布了卫生健康行业标准《儿科输血指南》(WS/T 795-2022)。接受心脏手术的患儿出血风险大,围手术期新生儿和儿童贫血和凝血功能障碍原因复杂多样,因此常需要输注异体血液成分。该指南对心脏手术患儿术前、术中、术后患者血液管理的具体措施给出了指导和建议。该文对心脏手术患儿输血条款内容的编制背景和证据做出解读,希望有助于该指南的理解和贯彻实施。

Abstract

To guide clinical blood transfusion practices in pediatric patients, the National Health Commission has issued the health standard "Guideline for pediatric transfusion" (WS/T 795-2022). Children undergoing cardiac surgery are at high risk of bleeding, and the causes of perioperative anemia and coagulation disorders in neonates and children are complex and varied, often necessitating the transfusion of allogeneic blood components. This guideline provides direction and recommendations for specific measures in blood management for children undergoing cardiac surgery before, during, and after surgery. This article interprets the background and evidence for the formulation of the blood transfusion provisions for children undergoing cardiac surgery, hoping to facilitate the understanding and implementation of this guideline.

关键词

心脏手术 / 血液管理 / 体外循环 / 严紧输血策略 / 儿童

Key words

Cardiac surgery / Blood management / Cardiopulmonary bypass / Restrictive transfusion strategy / Child

引用本文

导出引用
黄蓉, 何庆南, 黑明燕, . 国家卫生健康行业标准《儿科输血指南》中心脏手术患儿输血的编制说明与解读[J]. 中国当代儿科杂志. 2025, 27(7): 778-785 https://doi.org/10.7499/j.issn.1008-8830.2503114
Rong HUANG, Qing-Nan HE, Ming-Yan HEI, et al. Explanation and interpretation of blood transfusion provisions for children undergoing cardiac surgery in the national health standard "Guideline for pediatric transfusion"[J]. Chinese Journal of Contemporary Pediatrics. 2025, 27(7): 778-785 https://doi.org/10.7499/j.issn.1008-8830.2503114

参考文献

[1]
Despotis GJ, Gravlee G, Filos K, et al. Anticoagulation monitoring during cardiac surgery: a review of current and emerging techniques[J]. Anesthesiology, 1999, 91(4): 1122-1151. DOI: 10.1097/00000542-199910000-00031 .
[2]
Paparella D, Brister SJ, Buchanan MR. Coagulation disorders of cardiopulmonary bypass: a review[J]. Intensive Care Med, 2004, 30(10): 1873-1881. DOI: 10.1007/s00134-004-2388-0 .
[3]
中华人民共和国国家卫生健康委员会法规司. 关于发布《输血相容性检测标准》等3项推荐性卫生行业标准的通告: 国卫通〔2022〕1号[EB/OL]. (2022-02-23)[2022-09-01].
[4]
Faraoni D, Meier J, New HV, et al. Patient blood management for neonates and children undergoing cardiac surgery: 2019 NATA guidelines[J]. J Cardiothorac Vasc Anesth, 2019, 33(12): 3249-3263. DOI: 10.1053/j.jvca.2019.03.036 .
[5]
Goobie SM, Faraoni D, Zurakowski D, et al. Association of preoperative anemia with postoperative mortality in neonates[J]. JAMA Pediatr, 2016, 170(9): 855-862. DOI: 10.1001/jamapediatrics.2016.1032 .
[6]
Faraoni D, DiNardo JA, Goobie SM. Relationship between preoperative anemia and in-hospital mortality in children undergoing noncardiac surgery[J]. Anesth Analg, 2016, 123(6): 1582-1587. DOI: 10.1213/ANE.0000000000001499 .
[7]
Mulaj M, Faraoni D, Willems A, et al. Predictive factors for red blood cell transfusion in children undergoing noncomplex cardiac surgery[J]. Ann Thorac Surg, 2014, 98(2): 662-667. DOI: 10.1016/j.athoracsur.2014.04.089 .
[8]
Park SK, Hur M, Kim E, et al. Risk factors for acute kidney injury after congenital cardiac surgery in infants and children: a retrospective observational study[J]. PLoS One, 2016, 11(11): e0166328. PMCID: PMC5104485. DOI: 10.1371/journal.pone.0166328 .
[9]
Williams GD, Bratton SL, Ramamoorthy C. Factors associated with blood loss and blood product transfusions: a multivariate analysis in children after open-heart surgery[J]. Anesth Analg, 1999, 89(1): 57-64. DOI: 10.1097/00000539-199907000-00011 .
[10]
Moganasundram S, Hunt BJ, Sykes K, et al. The relationship among thromboelastography, hemostatic variables, and bleeding after cardiopulmonary bypass surgery in children[J]. Anesth Analg, 2010, 110(4): 995-1002. DOI: 10.1213/ANE.0b013e3181cd6d20 .
[11]
Hayashi T, Sakurai Y, Fukuda K, et al. Correlations between global clotting function tests, duration of operation, and postoperative chest tube drainage in pediatric cardiac surgery[J]. Paediatr Anaesth, 2011, 21(8): 865-871. DOI: 10.1111/j.1460-9592.2011.03524.x .
[12]
New HV, Berryman J, Bolton-Maggs PH, et al. Guidelines on transfusion for fetuses, neonates and older children[J]. Br J Haematol, 2016, 175(5): 784-828. DOI: 10.1111/bjh.14233 .
[13]
Sniecinski RM, Chandler WL. Activation of the hemostatic system during cardiopulmonary bypass[J]. Anesth Analg, 2011, 113(6): 1319-1333. DOI: 10.1213/ANE.0b013e3182354b7e .
[14]
Despotis GJ, Avidan MS, Hogue CW. Mechanisms and attenuation of hemostatic activation during extracorporeal circulation[J]. Ann Thorac Surg, 2001, 72(5): S1821-S1831. DOI: 10.1016/s0003-4975(01)03211-8 .
[15]
中国心胸血管麻醉学会血液管理分会. 心血管手术患者血液管理专家共识[J]. 中国输血杂志, 2018, 31(4): 321-325. DOI: 10.13303/j.cjbt.issn.1004-549x.2018.04.001 .
[16]
Faraoni D, Willems A, Melot C, et al. Efficacy of tranexamic acid in paediatric cardiac surgery: a systematic review and meta-analysis[J]. Eur J Cardiothorac Surg, 2012, 42(5): 781-786. DOI: 10.1093/ejcts/ezs127 .
[17]
Eaton MP. Antifibrinolytic therapy in surgery for congenital heart disease[J]. Anesth Analg, 2008, 106(4): 1087-1100. DOI: 10.1213/ane.0b013e3181679555 .
[18]
Kratzer S, Irl H, Mattusch C, et al. Tranexamic acid impairs γ-aminobutyric acid receptor type A-mediated synaptic transmission in the murine amygdala: a potential mechanism for drug-induced seizures?[J]. Anesthesiology, 2014, 120(3): 639-649. DOI: 10.1097/ALN.0000000000000103 .
[19]
Lecker I, Wang DS, Romaschin AD, et al. Tranexamic acid concentrations associated with human seizures inhibit glycine receptors[J]. J Clin Invest, 2012, 122(12): 4654-4666. PMCID: PMC3533541. DOI: 10.1172/JCI63375 .
[20]
Faraoni D, Rahe C, Cybulski KA. Use of antifibrinolytics in pediatric cardiac surgery: Where are we now?[J]. Paediatr Anaesth, 2019, 29(5): 435-440. DOI: 10.1111/pan.13533 .
[21]
Shin'oka T, Shum-Tim D, Jonas RA, et al. Higher hematocrit improves cerebral outcome after deep hypothermic circulatory arrest[J]. J Thorac Cardiovasc Surg, 1996, 112(6): 1610-1620; discussion 1620-1621. DOI: 10.1016/S0022-5223(96)70020-X .
[22]
Jonas RA, Wypij D, Roth SJ, et al. The influence of hemodilution on outcome after hypothermic cardiopulmonary bypass: results of a randomized trial in infants[J]. J Thorac Cardiovasc Surg, 2003, 126(6): 1765-1774. DOI: 10.1016/j.jtcvs.2003.04.003 .
[23]
Newburger JW, Jonas RA, Soul J, et al. Randomized trial of hematocrit 25% versus 35% during hypothermic cardiopulmonary bypass in infant heart surgery[J]. J Thorac Cardiovasc Surg, 2008, 135(2): 347-354.e4. DOI: 10.1016/j.jtcvs.2007.01.051 .
[24]
Wypij D, Jonas RA, Bellinger DC, et al. The effect of hematocrit during hypothermic cardiopulmonary bypass in infant heart surgery: results from the combined Boston hematocrit trials[J]. J Thorac Cardiovasc Surg, 2008, 135(2): 355-360. DOI: 10.1016/j.jtcvs.2007.03.067 .
[25]
Redlin M, Huebler M, Boettcher W, et al. Minimizing intraoperative hemodilution by use of a very low priming volume cardiopulmonary bypass in neonates with transposition of the great arteries[J]. J Thorac Cardiovasc Surg, 2011, 142(4): 875-881. DOI: 10.1016/j.jtcvs.2011.01.068 .
[26]
Lee JW, Yoo YC, Park HK, et al. Fresh frozen plasma in pump priming for congenital heart surgery: evaluation of effects on postoperative coagulation profiles using a fibrinogen assay and rotational thromboelastometry[J]. Yonsei Med J, 2013, 54(3): 752-762. PMCID: PMC3635629. DOI: 10.3349/ymj.2013.54.3.752 .
[27]
Faraoni D, Van der Linden P. Factors affecting postoperative blood loss in children undergoing cardiac surgery[J]. J Cardiothorac Surg, 2014, 9: 32. PMCID: PMC3924411. DOI: 10.1186/1749-8090-9-32 .
[28]
Desborough M, Sandu R, Brunskill SJ, et al. Fresh frozen plasma for cardiovascular surgery[J]. Cochrane Database Syst Rev, 2015, 2015(7): CD007614. PMCID: PMC8406941. DOI: 10.1002/14651858.CD007614.pub2 .
[29]
Riegger LQ, Voepel-Lewis T, Kulik TJ, et al. Albumin versus crystalloid prime solution for cardiopulmonary bypass in young children[J]. Crit Care Med, 2002, 30(12): 2649-2654. DOI: 10.1097/00003246-200212000-00007 .
[30]
Hanart C, Khalife M, De Villé A, et al. Perioperative volume replacement in children undergoing cardiac surgery: albumin versus hydroxyethyl starch 130/0.4[J]. Crit Care Med, 2009, 37(2): 696-701. DOI: 10.1097/CCM.0b013e3181958c81 .
[31]
Van der Linden P, De Villé A, Hofer A, et al. Six percent hydroxyethyl starch 130/0.4 (Voluven®) versus 5% human serum albumin for volume replacement therapy during elective open-heart surgery in pediatric patients[J]. Anesthesiology, 2013, 119(6): 1296-1309. DOI: 10.1097/ALN.0b013e3182a6b387 .
[32]
Van der Linden P, Dumoulin M, Van Lerberghe C, et al. Efficacy and safety of 6% hydroxyethyl starch 130/0.4 (Voluven) for perioperative volume replacement in children undergoing cardiac surgery: a propensity-matched analysis[J]. Crit Care, 2015, 19(1): 87. PMCID: PMC4376346. DOI: 10.1186/s13054-015-0830-z .
[33]
Williams GD, Ramamoorthy C, Chu L, et al. Modified and conventional ultrafiltration during pediatric cardiac surgery: clinical outcomes compared[J]. J Thorac Cardiovasc Surg, 2006, 132(6): 1291-1298. DOI: 10.1016/j.jtcvs.2006.05.059 .
[34]
Kuratani N, Bunsangjaroen P, Srimueang T, et al. Modified versus conventional ultrafiltration in pediatric cardiac surgery: a meta-analysis of randomized controlled trials comparing clinical outcome parameters[J]. J Thorac Cardiovasc Surg, 2011, 142(4): 861-867. DOI: 10.1016/j.jtcvs.2011.04.001 .
[35]
Golab HD, Takkenberg JJ, van Gerner-Weelink GL, et al. Effects of cardiopulmonary bypass circuit reduction and residual volume salvage on allogeneic transfusion requirements in infants undergoing cardiac surgery[J]. Interact Cardiovasc Thorac Surg, 2007, 6(3): 335-339. DOI: 10.1510/icvts.2006.141226 .
[36]
Cholette JM, Powers KS, Alfieris GM, et al. Transfusion of cell saver salvaged blood in neonates and infants undergoing open heart surgery significantly reduces RBC and coagulant product transfusions and donor exposures: results of a prospective, randomized, clinical trial[J]. Pediatr Crit Care Med, 2013, 14(2): 137-147. PMCID: PMC3671922. DOI: 10.1097/PCC.0b013e31826e741c .
[37]
Guzzetta NA, Miller BE, Todd K, et al. An evaluation of the effects of a standard heparin dose on thrombin inhibition during cardiopulmonary bypass in neonates[J]. Anesth Analg, 2005, 100(5): 1276-1282. DOI: 10.1213/01.ANE.0000149590.59294.3A .
[38]
Gruenwald CE, Manlhiot C, Chan AK, et al. Randomized, controlled trial of individualized heparin and protamine management in infants undergoing cardiac surgery with cardiopulmonary bypass[J]. J Am Coll Cardiol, 2010, 56(22): 1794-1802. DOI: 10.1016/j.jacc.2010.06.046 .
[39]
Kozek-Langenecker SA, Ahmed AB, Afshari A, et al. Management of severe perioperative bleeding: guidelines from the European Society of Anaesthesiology: first update 2016[J]. Eur J Anaesthesiol, 2017, 34(6): 332-395. DOI: 10.1097/EJA.0000000000000630 .
[40]
Perez-Ferrer A, Vicente-Sanchez J, Carceles-Baron MD, et al. Early thromboelastometry variables predict maximum clot firmness in children undergoing cardiac and non-cardiac surgery[J]. Br J Anaesth, 2015, 115(6): 896-902. DOI: 10.1093/bja/aev369 .
[41]
Pekelharing J, Furck A, Banya W, et al. Comparison between thromboelastography and conventional coagulation tests after cardiopulmonary bypass surgery in the paediatric intensive care unit[J]. Int J Lab Hematol, 2014, 36(4): 465-471. DOI: 10.1111/ijlh.12171 .
[42]
Willems A, Harrington K, Lacroix J, et al. Comparison of two red-cell transfusion strategies after pediatric cardiac surgery: a subgroup analysis[J]. Crit Care Med, 2010, 38(2): 649-656. DOI: 10.1097/CCM.0b013e3181bc816c .
[43]
de Gast-Bakker DH, de Wilde RB, Hazekamp MG, et al. Safety and effects of two red blood cell transfusion strategies in pediatric cardiac surgery patients: a randomized controlled trial[J]. Intensive Care Med, 2013, 39(11): 2011-2019. DOI: 10.1007/s00134-013-3085-7 .
[44]
Cholette JM, Rubenstein JS, Alfieris GM, et al. Children with single-ventricle physiology do not benefit from higher hemoglobin levels post cavopulmonary connection: results of a prospective, randomized, controlled trial of a restrictive versus liberal red-cell transfusion strategy[J]. Pediatr Crit Care Med, 2011, 12(1): 39-45. DOI: 10.1097/PCC.0b013e3181e329db .
[45]
Cholette JM, Swartz MF, Rubenstein J, et al. Outcomes using a conservative versus liberal red blood cell transfusion strategy in infants requiring cardiac operation[J]. Ann Thorac Surg, 2017, 103(1): 206-214. DOI: 10.1016/j.athoracsur.2016.05.049 .
[46]
Task Force on Patient Blood Management for Adult Cardiac Surgery of the European Association for Cardio-Thoracic Surgery (EACTS) and the European Association of Cardiothoracic Anaesthesiology (EACTA), Boer C, Meesters MI, et al. 2017 EACTS/EACTA guidelines on patient blood management for adult cardiac surgery[J]. J Cardiothorac Vasc Anesth, 2018, 32(1): 88-120. DOI: 10.1053/j.jvca.2017.06.026 .
[47]
Galas FR, de Almeida JP, Fukushima JT, et al. Hemostatic effects of fibrinogen concentrate compared with cryoprecipitate in children after cardiac surgery: a randomized pilot trial[J]. J Thorac Cardiovasc Surg, 2014, 148(4): 1647-1655. DOI: 10.1016/j.jtcvs.2014.04.029 .

脚注

所有作者均声明无利益冲突。


编委: 张辉

版权

版权所有 © 2023中国当代儿科杂志
PDF(600 KB)
HTML

Accesses

Citation

Detail

段落导航
相关文章

/