人脐带间充质干细胞通过激活Nrf2/Keap1/HO-1信号通路对新生大鼠脑白质损伤的保护作用

王超, 王梦欣, 朱艳萍

中国当代儿科杂志 ›› 2025, Vol. 27 ›› Issue (11) : 1398-1407.

PDF(2571 KB)
HTML
PDF(2571 KB)
HTML
中国当代儿科杂志 ›› 2025, Vol. 27 ›› Issue (11) : 1398-1407. DOI: 10.7499/j.issn.1008-8830.2504152
论著·实验研究

人脐带间充质干细胞通过激活Nrf2/Keap1/HO-1信号通路对新生大鼠脑白质损伤的保护作用

作者信息 +

Human umbilical cord mesenchymal stem cells protect against neonatal white matter injury by activating the Nrf2/Keap1/HO-1 signaling pathway

Author information +
文章历史 +

摘要

目的 探讨人脐带间充质干细胞(human umbilical cord mesenchymal stem cell, HUC-MSC)通过核转录因子红系2相关因子2(nuclear factor-erythroid 2-related factor 2, Nrf2)/Kelch样环氧氯丙烷相关蛋白1(Kelch-like epichlorohydrin-associated protein 1, Keap1)/血红素加氧酶1(heme oxygenase-1, HO-1)信号通路对新生大鼠脑白质损伤(white matter injury, WMI)的保护作用。 方法 将3日龄Sprague-Dawley大鼠通过单侧颈总动脉结扎联合低氧法构建新生大鼠WMI模型。实验分为两部分:(1)将新生大鼠随机分为假手术组、缺氧缺血(hypoxia-ischemia, HI)组、HUC-MSC组(各组n=36),于建模后7、14、21 d收集脑组织样本进行检测;(2)将新生大鼠随机分为假手术组、HI组、HUC-MSC组、HUC-MSC+ML385(Nrf2特异性抑制剂)组(各组n=12),于建模后14 d收集脑组织样本进行检测。采用苏木精-伊红染色观察脑组织病理改变,劳克坚牢蓝染色观察脑组织髓鞘化情况,免疫组织化学染色检测Nrf2、髓磷脂碱性蛋白质(myelin basic protein, MBP)及髓鞘蛋白脂质蛋白质(proteolipid protein, PLP)的定位表达,免疫荧光染色观察突触素(synaptophysin, SYP)、突触后致密区95(postsynaptic density-95, PSD-95)的定位表达,免疫印迹法检测Nrf2、Keap1、HO-1、SYP、PSD-95、MBP、PLP蛋白表达,Morris水迷宫实验评估大鼠空间认知能力改变。 结果 建模后7、14、21 d,假手术组脑白质结构完整,细胞形态正常,神经纤维排列整齐;HI组脑白质结构破裂、细胞空泡化、神经纤维排列紊乱;HUC-MSC组脑白质病理改变较HI组减轻;与HI组相比,HUC-MSC组Nrf2阳性表达和蛋白表达、HO-1蛋白表达增加(P<0.05),Keap1蛋白表达减少(P<0.05)。与HI组相比,HUC-MSC组SYP、PSD-95平均荧光强度和蛋白表达及MBP、PLP阳性表达和蛋白表达、髓鞘平均光密度值、平台穿越次数、目标象限停留时间增加(P<0.05);与HUC-MSC组相比,HUC-MSC+ML385组上述指标降低(P<0.05)。 结论 HUC-MSC可能通过激活Nrf2/Keap1/HO-1信号通路促进新生大鼠WMI后少突胶质细胞的成熟和突触形成,改善其空间认知能力。

Abstract

Objective To investigate whether human umbilical cord mesenchymal stem cells (HUC-MSCs) play protective effects against white matter injury (WMI) in neonatal rats via activation of the nuclear factor-erythroid 2-related factor 2 (Nrf2)/Kelch-like ECH-associated protein 1 (Keap1)/heme oxygenase-1 (HO-1) signaling pathway. Methods A neonatal WMI model was established in 3-day-old Sprague-Dawley rats by unilateral common carotid artery ligation combined with hypoxia. The study comprised two parts. (1) Rats were randomized into sham, hypoxia-ischemia (HI), and HUC-MSC groups (n=36 per group); brain tissues were collected at 7, 14, and 21 days after modeling. (2) Rats were randomized into sham, HI, HUC-MSC, and HUC-MSC+ML385 (Nrf2 inhibitor) groups (n=12 per group); tissues were collected 14 days after modeling. Hematoxylin-eosin staining assessed histopathology, and Luxol fast blue staining evaluated myelination. Immunohistochemistry examined the localization and expression of Nrf2, myelin basic protein (MBP), and proteolipid protein (PLP). Immunofluorescence assessed synaptophysin (SYP) and postsynaptic density-95 (PSD-95). Western blotting quantified Nrf2, Keap1, HO-1, SYP, PSD-95, MBP, and PLP. Spatial learning and memory were evaluated by the Morris water maze. Results At 7, 14, and 21 days after modeling, the sham group showed intact white matter, whereas the HI group exhibited white matter disruption, cellular vacuolation, and disorganized nerve fibers. These pathological changes were attenuated in the HUC-MSC group. Compared with the HI group, the HUC-MSC group showed increased Nrf2 immunopositivity and protein levels, increased HO-1 protein levels, and decreased Keap1 protein levels (P<0.05). Compared with the HI group, the HUC-MSC group had higher SYP and PSD-95 immunofluorescence intensities and protein levels, higher MBP and PLP positivity and protein levels, increased mean optical density of myelin, more platform crossings, and longer time in the target quadrant (all P<0.05). These improvements were reduced in the HUC-MSC+ML385 group compared with the HUC-MSC group (P<0.05). Conclusions HUC-MSCs may promote oligodendrocyte maturation and synaptogenesis after neonatal WMI by activating the Nrf2/Keap1/HO-1 pathway, thereby improving spatial cognitive function.

关键词

脑白质损伤 / 少突胶质细胞 / 核转录因子红系2相关因子2 / 人脐带间充质干细胞 / 新生大鼠

Key words

White matter injury / Oligodendrocyte / Nuclear factor-erythroid 2-related factor 2 / Human umbilical cord mesenchymal stem cell / Neonatal rat

引用本文

导出引用
王超, 王梦欣, 朱艳萍. 人脐带间充质干细胞通过激活Nrf2/Keap1/HO-1信号通路对新生大鼠脑白质损伤的保护作用[J]. 中国当代儿科杂志. 2025, 27(11): 1398-1407 https://doi.org/10.7499/j.issn.1008-8830.2504152
Chao WANG, Meng-Xin WANG, Yan-Ping ZHU. Human umbilical cord mesenchymal stem cells protect against neonatal white matter injury by activating the Nrf2/Keap1/HO-1 signaling pathway[J]. Chinese Journal of Contemporary Pediatrics. 2025, 27(11): 1398-1407 https://doi.org/10.7499/j.issn.1008-8830.2504152

参考文献

[1]
World Health Organization. Preterm birth[EB/OL]. (2023-05-10)[2024-03-31].
[2]
Travers CP, Carlo WA, Ambalavanan N. The future of outcome prediction for preterm infants in the neonatal ICU[J]. Am J Respir Crit Care Med, 2022, 205(1): 6-8. PMCID: PMC8865594. DOI: 10.1164/rccm.202109-2188ED .
[3]
Lear BA, Lear CA, Dhillon SK, et al. Is late prevention of cerebral palsy in extremely preterm infants plausible?[J]. Dev Neurosci, 2022, 44(4-5): 177-185. DOI: 10.1159/000521618 .
[4]
Motavaf M, Piao X. Oligodendrocyte development and implication in perinatal white matter injury[J]. Front Cell Neurosci, 2021, 15: 764486. PMCID: PMC8599582. DOI: 10.3389/fncel.2021.764486 .
[5]
Tang H, Jiang Y, Zhang JH. Stem cell therapy for brain injury[J]. Stem Cells Dev, 2020, 29(4): 177. DOI: 10.1089/scd.2020.29005.tan .
[6]
Ding DC, Chang YH, Shyu WC, et al. Human umbilical cord mesenchymal stem cells: a new era for stem cell therapy[J]. Cell Transplant, 2015, 24(3): 339-347. DOI: 10.3727/096368915X686841 .
[7]
Jia Y, Cao N, Zhai J, et al. HGF mediates clinical-grade human umbilical cord-derived mesenchymal stem cells improved functional recovery in a senescence-accelerated mouse model of Alzheimer's disease[J]. Adv Sci (Weinh), 2020, 7(17): 1903809. PMCID: PMC7507104. DOI: 10.1002/advs.201903809 .
[8]
Liu G, Wang D, Jia J, et al. Neuroprotection of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) in alleviating ischemic stroke-induced brain injury by regulating inflammation and oxidative stress[J]. Neurochem Res, 2024, 49(10): 2871-2887. DOI: 10.1007/s11064-024-04212-x .
[9]
Robertson NJ, Meehan C, Martinello KA, et al. Human umbilical cord mesenchymal stromal cells as an adjunct therapy with therapeutic hypothermia in a piglet model of perinatal asphyxia[J]. Cytotherapy, 2021, 23(6): 521-535. PMCID: PMC8139415. DOI: 10.1016/j.jcyt.2020.10.005 .
[10]
Dinkova-Kostova AT, Kostov RV, Kazantsev AG. The role of Nrf2 signaling in counteracting neurodegenerative diseases[J]. FEBS J, 2018, 285(19): 3576-3590. PMCID: PMC6221096. DOI: 10.1111/febs.14379 .
[11]
Sun YY, Zhu HJ, Zhao RY, et al. Remote ischemic conditioning attenuates oxidative stress and inflammation via the Nrf2/HO-1 pathway in MCAO mice[J]. Redox Biol, 2023, 66: 102852. PMCID: PMC10462885. DOI: 10.1016/j.redox.2023.102852 .
[12]
Zhang Q, Luo C, Li Z, et al. Astaxanthin activates the Nrf2/Keap1/HO-1 pathway to inhibit oxidative stress and ferroptosis, reducing triphenyl phosphate (TPhP)-induced neurodevelopmental toxicity[J]. Ecotoxicol Environ Saf, 2024, 271: 115960. DOI: 10.1016/j.ecoenv.2024.115960 .
[13]
Li Y, Huang J, Wang J, et al. Human umbilical cord-derived mesenchymal stem cell transplantation supplemented with curcumin improves the outcomes of ischemic stroke via AKT/GSK-3β/β-TrCP/Nrf2 axis[J]. J Neuroinflammation, 2023, 20(1): 49. PMCID: PMC9951499. DOI: 10.1186/s12974-023-02738-5 .
[14]
Ma S, Zhou X, Wang Y, et al. MG53 protein rejuvenates hUC-MSCs and facilitates their therapeutic effects in AD mice by activating Nrf2 signaling pathway[J]. Redox Biol, 2022, 53: 102325. PMCID: PMC9079718. DOI: 10.1016/j.redox.2022.102325 .
[15]
Wang CC, Hu XM, Long YF, et al. Treatment of Parkinson's disease model with human umbilical cord mesenchymal stem cell-derived exosomes loaded with BDNF[J]. Life Sci, 2024, 356: 123014. DOI: 10.1016/j.lfs.2024.123014 .
[16]
Zhang L, Bai W, Peng Y, et al. Human umbilical cord mesenchymal stem cell-derived exosomes provide neuroprotection in traumatic brain injury through the lncRNA TUBB6/Nrf2 pathway[J]. Brain Res, 2024, 1824: 148689. DOI: 10.1016/j.brainres.2023.148689 .
[17]
Vannucci RC, Connor JR, Mauger DT, et al. Rat model of perinatal hypoxic-ischemic brain damage[J]. J Neurosci Res, 1999, 55(2): 158-163. DOI: 10.1002/(SICI)1097-4547(19990115)55:2<158::AID-JNR3>3.0.CO;2-1 .
[18]
Cheng T, Xue X, Fu J. Effect of OLIG1 on the development of oligodendrocytes and myelination in a neonatal rat PVL model induced by hypoxia-ischemia[J]. Mol Med Rep, 2015, 11(4): 2379-2386. PMCID: PMC4337744. DOI: 10.3892/mmr.2014.3028 .
[19]
张军, 李明霞, 王超, 等. 不同剂量人脐带间充质干细胞移植对新生大鼠脑白质损伤的修复作用[J]. 中国当代儿科杂志, 2024, 26(4): 394-402. PMCID: PMC11057307. DOI: 10.7499/j.issn.1008-8830.2310081 .
[20]
徐倩倩, 张书绢, 王超, 等. 人脐带间充质干细胞对新生大鼠脑白质损伤的修复作用[J]. 中华新生儿科杂志(中英文), 2025, 40(5): 297-305. DOI: 10.3760/cma.j.cn101451-20241006-00348 .
[21]
Hoang DM, Pham PT, Bach TQ, et al. Stem cell-based therapy for human diseases[J]. Signal Transduct Target Ther, 2022, 7(1): 272. PMCID: PMC9357075. DOI: 10.1038/s41392-022-01134-4 .
[22]
Zhu LH, Bai X, Zhang N, et al. Improvement of human umbilical cord mesenchymal stem cell transplantation on glial cell and behavioral function in a neonatal model of periventricular white matter damage[J]. Brain Res, 2014, 1563: 13-21. DOI: 10.1016/j.brainres.2014.03.030 .
[23]
Liao Z, Yang X, Wang W, et al. hucMSCs transplantation promotes locomotor function recovery, reduces apoptosis and inhibits demyelination after SCI in rats[J]. Neuropeptides, 2021, 86: 102125. DOI: 10.1016/j.npep.2021.102125 .
[24]
Chen C, Hu N, Wang J, et al. Umbilical cord mesenchymal stem cells promote neurological repair after traumatic brain injury through regulating Treg/Th17 balance[J]. Brain Res, 2022, 1775: 147711. DOI: 10.1016/j.brainres.2021.147711 .
[25]
Feng J, He W, Xia J, et al. Human umbilical cord mesenchymal stem cells-derived exosomal circDLGAP4 promotes angiogenesis after cerebral ischemia-reperfusion injury by regulating miR-320/KLF5 axis[J]. FASEB J, 2023, 37(3): e22733. DOI: 10.1096/fj.202201488R .
[26]
Hu Z, Yuan Y, Zhang X, et al. Human umbilical cord mesenchymal stem cell-derived exosomes attenuate oxygen-glucose deprivation/reperfusion-induced microglial pyroptosis by promoting FOXO3a-dependent mitophagy[J]. Oxid Med Cell Longev, 2021, 2021: 6219715. PMCID: PMC8577931. DOI: 10.1155/2021/6219715 .
[27]
Jie Z, Huan Y, Mengyun W, et al. Nrf2 modulates immunosuppressive ability and cellular senescence of human umbilical cord mesenchymal stem cells[J]. Biochem Biophys Res Commun, 2020, 526(4): 1021-1027. DOI: 10.1016/j.bbrc.2020.03.175 .
[28]
Nishikawa S, Inoue Y, Hori Y, et al. Anti-inflammatory activity of kurarinone involves induction of HO-1 via the KEAP1/Nrf2 pathway[J]. Antioxidants (Basel), 2020, 9(9): 842. PMCID: PMC7554885. DOI: 10.3390/antiox9090842 .
[29]
Xian P, Hei Y, Wang R, et al. Mesenchymal stem cell-derived exosomes as a nanotherapeutic agent for amelioration of inflammation-induced astrocyte alterations in mice[J]. Theranostics, 2019, 9(20): 5956-5975. PMCID: PMC6735367. DOI: 10.7150/thno.33872 .
[30]
Kopacz A, Klóska D, Proniewski B, et al. Keap1 controls protein S-nitrosation and apoptosis-senescence switch in endothelial cells[J]. Redox Biol, 2020, 28: 101304. PMCID: PMC6731384. DOI: 10.1016/j.redox.2019.101304 .
[31]
Wang L, Zhang X, Xiong X, et al. Nrf2 regulates oxidative stress and its role in cerebral ischemic stroke[J]. Antioxidants (Basel), 2022, 11(12): 2377. PMCID: PMC9774301. DOI: 10.3390/antiox11122377 .
[32]
Zhang W, Wei R, Zhang L, et al. Sirtuin 6 protects the brain from cerebral ischemia/reperfusion injury through NRF2 activation[J]. Neuroscience, 2017, 366: 95-104. DOI: 10.1016/j.neuroscience.2017.09.035 .
[33]
Li Q, Lou J, Yang T, et al. Ischemic preconditioning induces oligodendrogenesis in mouse brain: effects of Nrf2 deficiency[J]. Cell Mol Neurobiol, 2022, 42(6): 1859-1873. PMCID: PMC11421701. DOI: 10.1007/s10571-021-01068-5 .

脚注

所有作者声明不存在利益冲突。

基金

国家自然科学基金地区科学基金(82060288)

编委: 杨丹

版权

版权所有 © 2023中国当代儿科杂志
PDF(2571 KB)
HTML

Accesses

Citation

Detail

段落导航
相关文章

/