
褪黑素对高氧致新生鼠慢性肺疾病肺组织氧化/抗氧化系统的影响
Effect of melatonin on hyperoxia-induced oxidant/antioxidant imbalance in the lung of neonatal rats with chronic lung disease
目的:探讨近年来发现的高效抗氧化剂褪黑素(MT)对高氧致新生鼠慢性肺疾病(CLD)肺组织氧化/抗氧化系统的影响。方法:采用高氧暴露(FiO2=0.85)致新生鼠CLD模型,足月新生鼠共90只随机分为3组(每组30只):空气对照组、高氧对照组、MT治疗组。空气对照组置于空气中,高氧对照组、MT治疗组(连同母鼠)置于玻璃氧箱中,维持FiO2为0.85;MT治疗组于生后0 d高氧暴露前30 min和生后每天给予MT 4 mg/kg腹腔注射直至实验结束。每组分别于实验后3,7,14 d随机选取10只处死,观察肺组织形态改变,分别测定肺组织中总抗氧化能力(T-AOC)、超氧化物歧化酶(SOD)、谷胱苷肽过氧化物酶(GSH-Px)活性、髓过氧化物酶(MPO)、过氧化氢酶(CAT)、NO水平(以NO2-/NO3-衡量)以及丙二醛(MDA)含量改变。结果:MT治疗组病理改变明显减轻。空气对照组、高氧对照组、MT治疗组T-AOC,SOD,GSH-Px及CAT活性随实验时间的延长均逐渐升高,但空气对照组、高氧对照组两组比较各项指标差异均无显著性(P>0.05),MT治疗组各项指标在实验各时点与空气对照组、高氧对照组相比均明显升高(P<0.05)。高氧对照组NO2-/NO3-,MDA水平以及MPO含量在3,7,14 d均高于空气对照组(P<0.05或0.01)。MT治疗组NO2-/NO3-,MDA水平以及MPO含量则明显降低,与高氧对照组比较差异具有显著性(P<0.05)。结论:MT通过提高肺组织的抗氧化能力、抑制氧化应激反应,从而逆转了高氧致新生鼠CLD肺组织氧化/抗氧化系统失衡。[中国当代儿科杂志,2009,11(7):581-584]
OBJECTIVE: To study the effect of melatonin, a potent antioxidant both in vitro and in vivo, on hyperoxia-induced oxidant/antioxidant imbalance in the lung of neonatal rats with chronic lung disease (CLD). METHODS: Ninety neonatal rats were randomly divided into three groups (n=30 each): air-exposed, hyperoxia-exposed, melatonin-treated (4 mg/kg melatonin was administered 30 minutes before hyperoxia exposure and once daily after exposure). CLD was induced by hyperoxia exposure (FiO2=0.85). Lung specimens were obtained 3, 7, and 14 days after exposure (n=10 each) for histopathologic examination. The levels of total antioxidase capacity (T-AOC), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), myeloperoxidase (MPO), catalase (CAT), nitrite/nitrate, and malondialdehyde (MDA) in the lung were assayed by the spectrophotometer. RESULTS: The histopathologic examination showed that lung damage was obviously alleviated in the melatonin-treated group. The levels of T-AOC, GSH-Px, SOD and CAT in the lung were significantly higher in the melatonin-treated group than those in the other two groups at all time points (P<0.05). The levels of MPO, nitrite/nitrate and MDA in the lung increased significantly in the untreated hypoxia-exposed group compared with those in the air-exposed group at all time points (P<0.05 or 0.01), while the levels of MPO, nitrite/nitrate and MDA in the melatonin-treated group were significantly reduced as compared with the untreated hypoxia-exposed group (P<0.05). CONCLUSIONS: Melatonin may reverse oxidant/antioxidant imbalance in hyperoxia-induced lung disease, thus providing a protective effect against CLD in neonatal rats.[Chin J Contemp Pediatr, 2009, 11 (7):581-584]
自由基 / 抗氧化酶 / 肺损伤 / 褪黑素 / 高氧 / 大鼠 / 新生
Free radical / Antioxidant / Lung damage / Melatonin / Hyperoxia / Neonatal rats
[1]Asikainen TM, White CW. Pulmonary antioxidant defenses in the preterm newborn with respiratory distress and bronchopulmonary dysplasia in evolution: implications for antioxidant therapy[J]. Antioxid Redox Signal, 2004, 6(1):155-167.
[2]Reiter RJ. Oxidative damage in the central nervous system: protection by melatonin [J]. Prog Neurobiol, 1998, 56(3):359-384.
[3]Gitto E, Reiter RJ, Sabatino G, Buonocore G, Romeo C, Gitto P, et al. Correlation among cytokines, bronchopulmonary dysplasia and modality of ventilation in preterm newborns: improvement with melatonin treatment [J]. J Pineal Res, 2005, 39(3):287-293.
[4]富建华,薛辛东.慢性肺疾病早产鼠BALF及肺组织中脂质过氧化的同步研究[J].中国优生与遗传杂志,2004,12(6):32-37.
[5]Ogihara T, Hirano K, Morinobu T, Kim HS, Hiroi M, Ogihara H, et al. Raised concentration of aldehyde lipid peroxidation products in premature infants with chronic lung disease[J]. Arch Dis Child Fetal Neonatal Ed, 1999, 80(1):F21-F25.
[6]Kaarteenaho-Wiik R, Kinnula VL. Distribution of antioxidant enzymes in developing human lung, respiratory distress syndrome, and bronchopulmonary dysplasia[J]. J Histochem Cytochem, 2004, 52(9):1231-1240.
[7]Asikainen TM, Raivio KO, Saksela M, Kinnula VL. Expression and developmental profile of antioxidant enzymes in human lung and liver [J]. Am J Respir Cell Mol Biol, 1998, 19(6):942-949.
[8]Dani C, Cecchi A, Bertini G. Role of oxidative stress as physiopathologic factor in the preterm infant[J]. Minerva Pediatr, 2004, 56(4):381-394.
[9]Tan DX, Manchester LC, Terron MP, Flores LJ, Reiter RJ. One molecule, many derivatives: a never-ending interaction of melatonin with reactive oxygen and nitrogen species?[J]. J Pineal Res, 2007, 42(1):28-42.
[10]Bandyopadhyay D, Biswas K, Bandyopadhyay U, Reiter RJ, Banerjee RK. Melatonin protects against stress-induced gastric lesions by scavenging the hydroxyl radical[J]. J Pineal Res, 2000, 29(3):143-151.
[11]Rodriguez C, Mayo JC, Sainz RM, Antolín I, Herrera F, Martín V, et al. Regulation of antioxidant enzymes: a significant role for melatonin[J]. J Pineal Res, 2004, 36(1):1-9.
[12]Giacomo CG, Antonio M. Melatonin in cardiac ischemia/reperfusion-induced mitochondrial adaptive changes [J]. Cardiovasc Hematol Disord Drug Targets, 2007, 7(3):163-169.
[13]Maharaj DS, Glass BD, Daya S. Melatonin: new places in therapy[J]. Biosci Rep, 2007, 27(6):299-320.
[14]侯伟,刘海燕,李丹,周戬平,陈玺.新生大鼠高氧肺损伤血管内皮生长因子蛋白及其mRNA表达变化研究[J].中国当代儿科杂志,2008,10(2):207-210.
[15]杜靖,杜立中,蒋静静,康兰芳,吴西玲.一氧化氮对新生鼠高氧肺损伤时表面活性蛋白A和肺甘露糖结合力的影响[J].中国当代儿科杂志,2006,8(6):486-490.
[16]Jahnke G, Marr M, Myers C, Wilson R, Travlos G, Price C. Maternal and developmental toxicity evaluation of melatonin administration orally to pregnant Sprague-Dawley rats[J]. Toxicol Res, 1999, 50(2):271-279.