甲型H7N9禽流感病毒的病毒学特征

刘春艳,艾军红

中国当代儿科杂志 ›› 2013, Vol. 15 ›› Issue (6) : 405-408.

PDF(1025 KB)
PDF(1025 KB)
中国当代儿科杂志 ›› 2013, Vol. 15 ›› Issue (6) : 405-408. DOI: 10.7499/j.issn.1008-8830.2013.06.002
禽流感专题

甲型H7N9禽流感病毒的病毒学特征

  • 刘春艳,艾军红
作者信息 +

Virological characteristics of avian influenza A H7N9 virus

  • LIU Chun-Yan, AI Jun-Hong
Author information +
文章历史 +

摘要

自2013年2月开始,中国东部省市陆续新发现了由甲型H7N9禽流感病毒引起人感染的病例。研究表明甲型H7N9病毒是一个单纯禽类来源的三元重配体,它的HA和PB2蛋白存在多个特征性突变(包括G186V、Q226L和E627K氨基酸替换),这些突变可能促进了该病毒与人细胞受体的结合以及病毒的复制。目前尚未发现H7N9禽流感病毒发生稳定的人与人间的传播,但不能排除有限人传人的可能。应加强对H7N9病毒的监测,进一步了解该病毒的来源、传播以及可能造成的威胁。

Abstract

From February 2013, a novel avian influenza A H7N9 virus causing human infection with fatal outcomes has been identified in eastern China. This avian influenza A H7N9 virus is a triple reassortant of viruses that are avian-origin only and it is low pathogenic in poultry. Several characteristic amino acid mutations in HA and PB2 polymerase subunit (including G186V, Q226L and E627K substitution) have been found through sequence analysis, and these mutations probably facilitate binding to human-type receptors and efficient replication in mammals. Other mutations in NA, M2 and NS genes were also found. Although sustained human-to-human transmission has not been conclusively established, limited human-to-human transmission of the H7N9 virus remains possible. Intensified surveillance for the H7N9 virus in humans and animals is needed to answer questions about the viral origin, spread and potential threat.

关键词

禽流感 / 甲型流感病毒 / H7N9病毒

Key words

Avian influenza / Influenza virus A / H7N9 virus

引用本文

导出引用
刘春艳,艾军红. 甲型H7N9禽流感病毒的病毒学特征[J]. 中国当代儿科杂志. 2013, 15(6): 405-408 https://doi.org/10.7499/j.issn.1008-8830.2013.06.002
LIU Chun-Yan, AI Jun-Hong. Virological characteristics of avian influenza A H7N9 virus[J]. Chinese Journal of Contemporary Pediatrics. 2013, 15(6): 405-408 https://doi.org/10.7499/j.issn.1008-8830.2013.06.002

参考文献

 [1]Lupiani B, Reddy SM. The history of avian influenza[J]. Comp Immunol Microbiol Infect Dis, 2009, 32(4): 311-323.

 [2]Fouchier RA, Schneeberger PM, Rozendaal FW, Broekman JM, Kemink SA, Munster V, et al. Avian influenza A virus (H7N7) associated with human conjunctivitis and a fatal case of acute respiratory distress syndrome[J]. Proc Natl Acad Sci USA, 2004,101(5): 1356-1361.

 [3]Koopmans M, Wilbrink B, Conyn M, Natrop G, van der Nat H, Vennema H, et al. Transmission of H7N7 avian influenza A virus to human beings during a large outbreak in commercial poultry farms in the Netherlands[J]. Lancet, 2004, 363(9409): 587-593.

 [4]Lin YP, Shaw M, Gregory V, Cameron K, Lim W, Klimov A, et al. Avian-to-human transmission of H9N2 subtype influenza A viruses: relationship between H9N2 and H5N1 human isolates[J]. Proc Natl Acad Sci USA, 2000, 97(17): 9654-9658.

 [5]Peiris JS, de Jong MD, Guan Y. Avian influenza virus (H5N1): a threat to human health[J]. Clin Microbiol Rev, 2007, 20(2): 243-267.

 [6]Gambotto A, Barratt-Boyes SM, de Jong MD, Neumann G, Kawaoka Y. Human infection with highly pathogenic H5N1 influenza virus[J]. Lancet, 2008, 371(9622): 1464-1475.

 [7]Kawaoka Y, Krauss S, Webster RG. Avian-to-human transmission of the PB1 gene of influenza A viruses in the 1957 and 1968 pandemics[J]. J Virol, 1989, 63(11): 4603-4608.

 [8]Taubenberger JK, Reid AH, Lourens RM, Wang R, Jin G, Fanning TG. Characterization of the 1918 influenza virus polymerase genes[J]. Nature, 2005, 437(7060): 889-893.

 [9]Gao R, Cao B, Hu Y, Feng Z, Wang D, Hu W, et al. Human infection with a novel avian-origin influenza A (H7N9) virus[J]. N Engl J Med, 2013. PMID: 23577628.

[10]Chen Y, Liang W, Yang S, Wu N, Gao H, Sheng J, et al. Human infections with the emerging avian influenza A H7N9 virus from wet market poultry: clinical analysis and characterisation of viral genome[J]. Lancet, 2013, doi: 10.1016/S0140-6736(13)60903-4.

[11]Cohen J. Influenza. New flu virus in China worries and confuses[J]. Science, 2013, 340(6129): 129-130.

[12]Li Q, Zhou L, Zhou M, Chen Z, Li F, Wu H, et al. Preliminary report: epidemiology of the avian influenza A (H7N9) outbreak in China[J]. N Engl J Med, 2013. PMID: 23614499.

[13]Uyeki TM, Cox NJ. Global concerns regarding novel influenza A (H7N9) virus infections[J]. N Engl J Med, 2013. PMID: 23577629.

[14]Kageyama T, Fujisaki S, Takashita E, Xu H, Yamada S, Uchida Y, et al. Genetic analysis of novel avian A(H7N9) influenza viruses isolated from patients  in China, February to April 2013[J]. Euro Surveill, 2013, 18(15). PMID: 23594575.

[15]Srinivasan K, Raman R, Jayaraman A, Viswanathan K, Sasisekharan R. Quantitative description of glycan-receptor binding of influenza a virus h7 hemagglutinin[J]. PLoS One, 2013, 8(2): e49597.

[16]Wang W, Lu B, Zhou H, Suguitan AL Jr, Cheng X, Subbarao K, et al. Glycosylation at 158N of the hemagglutinin protein and receptor binding specificity synergistically affect the antigenicity and immunogenicity of a live  attenuated H5N1 A/Vietnam/1203/2004 vaccine virus in ferrets[J]. J Virol, 2010, 84(13): 6570-6577.

[17]Xiong X, Coombs PJ, Martin SR, Liu J, Xiao H, McCauley JW, et al. Receptor binding by a ferret-transmissible H5 avian influenza virus[J]. Nature, 2013, doi: 10.1038/nature12144.

[18]Matsuoka Y, Swayne DE, Thomas C, Rameix-Welti MA, Naffakh N, Warnes C, et al. Neuraminidase stalk length and additional glycosylation of the hemagglutinin influence the virulence of influenza H5N1 viruses for mice[J]. J Virol, 2009, 83(9): 4704-4708.

[19]Mckimm-Breschkin JL, Sahasrabudhe A, Blick TJ, McDonald M, Colman PM, Hart GJ, et al. Mutations in a conserved residue in the influenza virus neuraminidase active site decreases sensitivity to Neu5Ac2en-derived inhibitors[J]. J Virol, 1998, 72(3): 2456-2462.

[20]Steel J, Lowen AC, Mubareka S, Palese P. Transmission of influenza virus in a mammalian host is increased by PB2 amino acids 627K or 627E/701N[J]. PLoS Pathog, 2009, 5(1): e1000252.

[21]Abdel-Ghafar AN, Chotpitayasunondh T, Gao Z, Peiris JS, Shindo N, Soeroso S, et al. Update on avian influenza A (H5N1) virus infection in humans[J]. N Engl J Med, 2008, 358(3): 261-273.

[22]Jiao P, Tian G, Li Y, Deng G, Jiang Y, Liu C, et al. A single-amino-acid substitution in the NS1 protein changes the pathogenicity of  H5N1 avian influenza viruses in mice[J]. J Virol, 2008, 82(3): 1146-1154.

[23]Jackson D, Hossain MJ, Hickman D, Perez DR, Lamb RA. A new influenza virus virulence determinant: the NS1 protein four C-terminal residues modulate pathogenicity[J]. Proc Natl Acad Sci USA, 2008, 105(11): 4381-4386.


PDF(1025 KB)

Accesses

Citation

Detail

段落导航
相关文章

/